Phase transitions with interfacial energy: convexity conditions and the existence of minimizers

作者: M. Šilhavý

DOI: 10.1007/978-3-7091-0174-2_6

关键词: Deformation (mechanics)Symmetry (physics)PhysicsSurface energyMathematical analysisPhase (matter)Parametric statisticsTopologyConvexityPhase transitionGeneralization

摘要: The article presents a variational theory of sharp phase interfaces bearing deformation dependent energy. involves both the standard and Eshelby stresses. constitutive is outlined including symmetry considerations some particular cases. existence equilibria proved based on appropriate convexity properties interfacial Some generalization given relationship established to semiellipticity condition from parametric integrals over rectifiable currents.

参考文章(33)
S. Müller, Tang Qi, B.S. Yan, On a new class of elastic deformations not allowing for cavitation Annales De L Institut Henri Poincare-analyse Non Lineaire. ,vol. 11, pp. 217- 243 ,(1994) , 10.1016/S0294-1449(16)30193-7
Fabrice Bethuel, Gerhard Huisken, Stefan Müller, Klaus Steffen, Stefan Müller, None, Variational models for microstructure and phase transitions Springer, Berlin, Heidelberg. pp. 85- 210 ,(1999) , 10.1007/BFB0092670
Diego Pallara, Luigi Ambrosio, Nicola Fusco, Functions of Bounded Variation and Free Discontinuity Problems ,(2000)
Giovanni. Zanzotto, Mario. Pitteri, Continuum Models for Phase Transitions and Twinning in Crystals ,(2002)
Herbert Federer, Geometric Measure Theory ,(1969)
James Sircom Allen, Geometric Integration Theory ,(2005)
Charles Bradfield Morrey, Multiple Integrals in the Calculus of Variations ,(1966)