Immersion Freezing of Kaolinite: Scaling with Particle Surface Area

作者: Susan Hartmann , Heike Wex , Tina Clauss , Stefanie Augustin-Bauditz , Dennis Niedermeier

DOI: 10.1175/JAS-D-15-0057.1

关键词: Immersion (virtual reality)KaoliniteScalingAnalytical chemistryAerosolMaterials scienceVolume (thermodynamics)Surface (mathematics)Charged particleParticleAtmospheric sciences

摘要: AbstractThis study presents an analysis showing that the freezing probability of kaolinite particles from Fluka scales exponentially with particle surface area for different atmospherically relevant sizes. Immersion experiments were performed at Leipzig Aerosol Cloud Interaction Simulator (LACIS). Size-selected mobility diameters 300, 700, and 1000 nm analyzed one per droplet. First, it is demonstrated immersion independent droplet volume. Using analyzer technique size selection involves presence multiply charged in quasi-monodisperse aerosol, which are larger than singly particles. The fractions these determined using cloud activation measurements. development a multiple charge correction method has proven to be essential deriving ice other quantities measurements here-applied used. ...

参考文章(80)
Ulrike Lohmann, André Welti, Zamin A. Kanji, Is there a lower size limit for mineral dust ice nuclei in the immersion mode EGU General Assembly Conference Abstracts. pp. 6722- ,(2014)
K Diehl, S Matthias-Maser, R Jaenicke, S.K Mitra, The ice nucleating ability of pollen:: Part II. Laboratory studies in immersion and contact freezing modes Atmospheric Research. ,vol. 61, pp. 125- 133 ,(2002) , 10.1016/S0169-8095(01)00132-6
James D. Klett, Hans R. Pruppacher, Microphysics of Clouds and Precipitation ,(1980)
Dennis Niedermeier, Barbara Ervens, Tina Clauss, Jens Voigtländer, Heike Wex, Susan Hartmann, Frank Stratmann, A computationally efficient description of heterogeneous freezing: A simplified version of the Soccer ball model Geophysical Research Letters. ,vol. 41, pp. 736- 741 ,(2014) , 10.1002/2013GL058684
G. de Boer, H. Morrison, M. D. Shupe, R. Hildner, Evidence of liquid dependent ice nucleation in high‐latitude stratiform clouds from surface remote sensors Geophysical Research Letters. ,vol. 38, ,(2011) , 10.1029/2010GL046016
Dennis Niedermeier, Stefanie Augustin-Bauditz, Susan Hartmann, Heike Wex, Karoliina Ignatius, Frank Stratmann, Can we define an asymptotic value for the ice active surface site density for heterogeneous ice nucleation Journal of Geophysical Research. ,vol. 120, pp. 5036- 5046 ,(2015) , 10.1002/2014JD022814
C. D. Westbrook, A. J. Illingworth, Evidence that ice forms primarily in supercooled liquid clouds at temperatures > −27°C Geophysical Research Letters. ,vol. 38, ,(2011) , 10.1029/2011GL048021
M. Paukert, C. Hoose, Modeling immersion freezing with aerosol-dependent prognostic ice nuclei in Arctic mixed-phase clouds Journal of Geophysical Research. ,vol. 119, pp. 9073- 9092 ,(2014) , 10.1002/2014JD021917
K. Kandler, K. Lieke, N. Benker, C. Emmel, M. Küpper, D. Müller-Ebert, M. Ebert, D. Scheuvens, A. Schladitz, L. Schütz, S. Weinbruch, Electron microscopy of particles collected at Praia, Cape Verde, during the Saharan Mineral Dust Experiment: particle chemistry, shape, mixing state and complex refractive index Tellus B. ,vol. 63, pp. 475- 496 ,(2011) , 10.1111/J.1600-0889.2011.00550.X
H Maring, DL Savoie, MA Izaguirre, L Custals, JS Reid, Mineral dust aerosol size distribution change during atmospheric transport Journal of Geophysical Research. ,vol. 108, pp. 8592- ,(2003) , 10.1029/2002JD002536