Analytical Results for the Maximal Lyapunov Exponent

作者: Roberto Livi , Antonio Politi , Stefano Ruffo

DOI: 10.1007/978-94-011-1691-6_33

关键词: Mathematical analysisCritical valueLyapunov exponentMathematicsRandom mediaPhase transitionLyapunov equationCoupling (probability)Chaotic mapLimit (mathematics)

摘要: We study analytically the maximal Lyapunov exponent for coupled chaotic map lattices and products of random Jacobi matrices. To this purpose we develop a mean-field treatment inspired by theory directed polymers in medium. In particular, investigate limit vanishing coupling strength e, extending previous results obtained 2×2 A phase transition is also predicted at critical value e c , which not observed numerical simulations might be an artifact approximation.

参考文章(12)
Andrea Crisanti, Angelo Vulpiani, G. Paladin, Products of random matrices in statistical physics ,(1993)
Hiroaki Daido, Coupling sensitivity of chaos: Theory and further numerical evidence Physics Letters A. ,vol. 121, pp. 60- 66 ,(1987) , 10.1016/0375-9601(87)90265-9
Irene Waller, Raymond Kapral, Spatial and temporal structure in systems of coupled nonlinear oscillators Physical Review A. ,vol. 30, pp. 2047- 2055 ,(1984) , 10.1103/PHYSREVA.30.2047
K. Kaneko, Spatiotemporal Intermittency in Coupled Map Lattices Progress of Theoretical Physics. ,vol. 74, pp. 1033- 1044 ,(1985) , 10.1143/PTP.74.1033
T. Schneider, A. Politi, M. P. Sörensen, Diffusion on a one-dimensional lattice and quantum localization. Physical Review A. ,vol. 37, pp. 948- 959 ,(1988) , 10.1103/PHYSREVA.37.948
L A Bunimovich, Ya G Sinai, Spacetime chaos in coupled map lattices Nonlinearity. ,vol. 1, pp. 491- 516 ,(1988) , 10.1088/0951-7715/1/4/001
S Isola, A Politi, S Ruffo, A Torcini, Lyapunov spectra of coupled map lattices Physics Letters A. ,vol. 143, pp. 365- 368 ,(1990) , 10.1016/0375-9601(90)90373-V
B. Derrida, H. Spohn, Polymers on disordered trees, spin glasses, and traveling waves Journal of Statistical Physics. ,vol. 51, pp. 817- 840 ,(1988) , 10.1007/BF01014886
Bernard Derrida, Random-energy model: An exactly solvable model of disordered systems Physical Review B. ,vol. 24, pp. 2613- 2626 ,(1981) , 10.1103/PHYSREVB.24.2613