Improving prediction of rare species’ distribution from community data

作者: Chongliang Zhang , Yong Chen , Binduo Xu , Ying Xue , Yiping Ren

DOI: 10.1038/S41598-020-69157-X

关键词: Rare speciesCross-validationStatisticsAbundance (ecology)Random forestRange (biology)Multivariate statisticsArtificial neural networkSpecies distributionComputer science

摘要: Species distribution models (SDMs) have been increasingly used to predict the geographic of a wide range organisms; however, relatively fewer research efforts concentrated on rare species despite their critical roles in biological conservation. The present study tested whether community data may improve modelling by sharing information among common and ones. We chose six SDMs that treat different ways, including two traditional single-species (random forest artificial neural network) four joint incorporate associations implicitly (multivariate random multi-response or explicitly (hierarchical communities generalized attribute model). In addition, we evaluated approaches arrangement, filtering conditional prediction, enhance selected models. model predictions were using cross validation based empirical collected from marine fisheries surveys, effects comparing for species. results demonstrated improved species' distributions certain extent but might also be unhelpful some cases. could appropriately predicted terms occurrence, whereas abundance tended underestimated most substantially benefited predictive performances multiple- models, respectively. conclude both algorithms need carefully order deliver improvement highlights opportunity challenges prediction making data.

参考文章(75)
Néstor M. Robinson, Wendy A. Nelson, Mark J. Costello, Judy E. Sutherland, Carolyn J. Lundquist, A Systematic Review of Marine-Based Species Distribution Models (SDMs) with Recommendations for Best Practice Frontiers in Marine Science. ,vol. 4, ,(2017) , 10.3389/FMARS.2017.00421
Chongliang Zhang, Yong Chen, Binduo Xu, Ying Xue, Yiping Ren, Comparing the prediction of joint species distribution models with respect to characteristics of sampling data Ecography. ,vol. 41, pp. 1876- 1887 ,(2018) , 10.1111/ECOG.03571
Holly K. Kindsvater, Nicholas K. Dulvy, Cat Horswill, Maria-José Juan-Jordá, Marc Mangel, Jason Matthiopoulos, Overcoming the Data Crisis in Biodiversity Conservation Trends in Ecology and Evolution. ,vol. 33, pp. 676- 688 ,(2018) , 10.1016/J.TREE.2018.06.004
Mirnesa Rizvanovic, Jonathan D. Kennedy, David Nogués-Bravo, Katharine A. Marske, Persistence of genetic diversity and phylogeographic structure of three New Zealand forest beetles under climate change Diversity and Distributions. ,vol. 25, pp. 142- 153 ,(2019) , 10.1111/DDI.12834
Katherine L. Yates, Phil J. Bouchet, M. Julian Caley, Kerrie Mengersen, Christophe F. Randin, Stephen Parnell, Alan H. Fielding, Andrew J. Bamford, Stephen Ban, A. Márcia Barbosa, Carsten F. Dormann, Jane Elith, Clare B. Embling, Gary N. Ervin, Rebecca Fisher, Susan Gould, Roland F. Graf, Edward J. Gregr, Patrick N. Halpin, Risto K. Heikkinen, Stefan Heinänen, Alice R. Jones, Periyadan K. Krishnakumar, Valentina Lauria, Hector Lozano-Montes, Laura Mannocci, Camille Mellin, Mohsen B. Mesgaran, Elena Moreno-Amat, Sophie Mormede, Emilie Novaczek, Steffen Oppel, Guillermo Ortuño Crespo, A. Townsend Peterson, Giovanni Rapacciuolo, Jason J. Roberts, Rebecca E. Ross, Kylie L. Scales, David Schoeman, Paul Snelgrove, Göran Sundblad, Wilfried Thuiller, Leigh G. Torres, Heroen Verbruggen, Lifei Wang, Seth Wenger, Mark J. Whittingham, Yuri Zharikov, Damaris Zurell, Ana M.M. Sequeira, Outstanding Challenges in the Transferability of Ecological Models. Trends in Ecology and Evolution. ,vol. 33, pp. 790- 802 ,(2018) , 10.1016/J.TREE.2018.08.001
Wendy B. Foden, Bruce E. Young, H. Resit Akçakaya, Raquel A. Garcia, Ary A. Hoffmann, Bruce A. Stein, Chris D. Thomas, Christopher J. Wheatley, David Bickford, Jamie A. Carr, David G. Hole, Tara G. Martin, Michela Pacifici, James W. Pearce‐Higgins, Philip J. Platts, Piero Visconti, James E. M. Watson, Brian Huntley, Climate change vulnerability assessment of species Wiley Interdisciplinary Reviews: Climate Change. ,vol. 10, ,(2019) , 10.1002/WCC.551
David P. Wilkinson, Nick Golding, Gurutzeta Guillera‐Arroita, Reid Tingley, Michael A. McCarthy, A comparison of joint species distribution models for presence–absence data Methods in Ecology and Evolution. ,vol. 10, pp. 198- 211 ,(2019) , 10.1111/2041-210X.13106
Francesca Della Rocca, Giuseppe Bogliani, Frank Thomas Breiner, Pietro Milanesi, Identifying hotspots for rare species under climate change scenarios: improving saproxylic beetle conservation in Italy Biodiversity and Conservation. ,vol. 28, pp. 433- 449 ,(2019) , 10.1007/S10531-018-1670-3
Leo Breiman, Random Forests Machine Learning archive. ,vol. 45, pp. 5- 32 ,(2001) , 10.1023/A:1010933404324
Tianxiao Hao, Jane Elith, Gurutzeta Guillera‐Arroita, José J. Lahoz‐Monfort, A review of evidence about use and performance of species distribution modelling ensembles like BIOMOD Diversity and Distributions. ,vol. 25, pp. 839- 852 ,(2019) , 10.1111/DDI.12892