AdaBoost with SVM-based component classifiers

作者: Xuchun Li , Lei Wang , Eric Sung

DOI: 10.1016/J.ENGAPPAI.2007.07.001

关键词: Computer sciencePattern recognitionSupport vector machineRadial basis function kernelArtificial intelligenceBoosting methods for object categorizationArtificial neural networkBoosting (machine learning)Machine learningEnsemble learningDecision treeClassifier (UML)AdaBoost

摘要: … The use of SVM (Support Vector Machine) as component classifier in AdaBoost may … AdaBoost with strong component classifiers is not viable. In this paper, we shall show that AdaBoost …

参考文章(50)
Stan Matwin, Miroslav Kubat, Addressing the Curse of Imbalanced Training Sets: One-Sided Selection. international conference on machine learning. pp. 179- 186 ,(1997)
Charles X. Ling, Chenghui Li, Data mining for direct marketing: problems and solutions knowledge discovery and data mining. pp. 73- 79 ,(1998)
N Cristianini, Icg Campbell, K Veropoulos, Controlling the Sensitivity of Support Vector Machines pp. 55- 60 ,(1999)
Sanjoy Dasgupta, Philip M. Long, Boosting with Diverse Base Classifiers Learning Theory and Kernel Machines. pp. 273- 287 ,(2003) , 10.1007/978-3-540-45167-9_21
Tom Fawcett, Foster Provost, Adaptive Fraud Detection Data Mining and Knowledge Discovery. ,vol. 1, pp. 291- 316 ,(1997) , 10.1023/A:1009700419189
Jeevani Wickramaratna, Sean Holden, Bernard Buxton, Performance Degradation in Boosting multiple classifier systems. pp. 11- 21 ,(2001) , 10.1007/3-540-48219-9_2
G. Rätsch, T. Onoda, K.-R. Müller, Soft Margins for AdaBoost Machine Learning. ,vol. 42, pp. 287- 320 ,(2001) , 10.1023/A:1007618119488
Thomas G. Dietterich, Giorgio Valentini, Bias-Variance Analysis of Support Vector Machines for the Development of SVM-Based Ensemble Methods Journal of Machine Learning Research. ,vol. 5, pp. 725- 775 ,(2004) , 10.5555/1005332.1016783
Rehan Akbani, Stephen Kwek, Nathalie Japkowicz, Applying support vector machines to imbalanced datasets european conference on machine learning. ,vol. 3201, pp. 39- 50 ,(2004) , 10.1007/978-3-540-30115-8_7