A customized proximal point algorithm for convex minimization with linear constraints

作者: Bingsheng He , Xiaoming Yuan , Wenxing Zhang

DOI: 10.1007/S10589-013-9564-5

关键词: Metric (mathematics)Image processingMathematicsMathematical optimizationBenchmark (computing)AlgorithmProximal Gradient MethodsResolvent operatorAugmented Lagrangian methodProximal pointConvex optimization

摘要: This paper demonstrates a customized application of the classical proximal point algorithm (PPA) to convex minimization problem with linear constraints. We show that if parameter in metric form is chosen appropriately, PPA could be effective exploit simplicity objective function. The resulting subproblems easier than those augmented Lagrangian method (ALM), benchmark for model under our consideration. efficiency demonstrated by some image processing problems.

参考文章(26)
Jalal M. Fadili, Jean-Luc Starck, Michael Elad, David L. Donoho, MCALab: Reproducible Research in Signal and Image Decomposition and Inpainting Computing in Science and Engineering. ,vol. 12, pp. 44- 63 ,(2010) , 10.1109/MCSE.2010.14
Amir Beck, Marc Teboulle, A Fast Iterative Shrinkage-Thresholding Algorithm for Linear Inverse Problems Siam Journal on Imaging Sciences. ,vol. 2, pp. 183- 202 ,(2009) , 10.1137/080716542
Leonid I. Rudin, Stanley Osher, Emad Fatemi, Nonlinear total variation based noise removal algorithms Physica D: Nonlinear Phenomena. ,vol. 60, pp. 259- 268 ,(1992) , 10.1016/0167-2789(92)90242-F
MÁrio A. T. Figueiredo, Robert D. Nowak, Stephen J. Wright, Gradient Projection for Sparse Reconstruction: Application to Compressed Sensing and Other Inverse Problems IEEE Journal of Selected Topics in Signal Processing. ,vol. 1, pp. 586- 597 ,(2007) , 10.1109/JSTSP.2007.910281
I. Daubechies, M. Defrise, C. De Mol, An iterative thresholding algorithm for linear inverse problems with a sparsity constraint Communications on Pure and Applied Mathematics. ,vol. 57, pp. 1413- 1457 ,(2004) , 10.1002/CPA.20042
Antonin Chambolle, A Fast Spectral Method for Active 3D Shape Reconstruction Journal of Mathematical Imaging and Vision. ,vol. 20, pp. 73- 87 ,(2004) , 10.1023/B:JMIV.0000011320.81911.38
Mário A T Figueiredo, M V Afonso, José M Bioucas-Dias, An Augmented Lagrangian Approach to the Constrained Optimization Formulation of Imaging Inverse Problems IEEE Transactions on Image Processing. ,vol. 20, pp. 681- 695 ,(2011) , 10.1109/TIP.2010.2076294
R. T. Rockafellar, Augmented Lagrangians and Applications of the Proximal Point Algorithm in Convex Programming Mathematics of Operations Research. ,vol. 1, pp. 97- 116 ,(1976) , 10.1287/MOOR.1.2.97
R. Glowinski, A. Marroco, Sur l'approximation, par éléments finis d'ordre un, et la résolution, par pénalisation-dualité d'une classe de problèmes de Dirichlet non linéaires Revue française d'automatique, informatique, recherche opérationnelle. Analyse numérique. ,vol. 9, pp. 41- 76 ,(1975) , 10.1051/M2AN/197509R200411
E. G. Gol’shtein, N. V. Tret’yakov, Modified Lagrangians in convex programming and their generalizations Mathematical Programming Studies. pp. 86- 97 ,(1979) , 10.1007/BFB0120845