Global Synchronization & Anti-Synchronization in N-Coupled Map Lattices

作者: M. A. Jafarizadeh , S. Behnia , E. Faizi , S. Ahadpour

DOI: 10.1007/S10773-007-9527-7

关键词: Discrete mathematicsSynchronization of chaosTopologyChaotic synchronizationLyapunov exponentDiagonalMathematicsInvariant measureEntropy (information theory)

摘要: By considering a symmetric N-dimensional map which possesses invariant measure in its diagonal and anti-diagonal sub-manifolds, we have been able to propose an N-coupled synchronized or anti-synchronized states. Then chaotic synchronization anti-synchronization are investigated the introduced model. We calculated Kolmogrov–Sinai entropy Lyapunov exponent as another tool study stability of

参考文章(30)
Miaohua Jiang, Sinai-Ruelle-Bowen Measures for Lattice Dynamical Systems Journal of Statistical Physics. ,vol. 111, pp. 863- 902 ,(2003) , 10.1023/A:1022854416660
Louis M. Pecora, Thomas L. Carroll, Synchronization in chaotic systems Physical Review Letters. ,vol. 64, pp. 821- 824 ,(1990) , 10.1103/PHYSREVLETT.64.821
Celia Anteneodo, Sandro E de S Pinto, Antônio M Batista, Ricardo L Viana, None, Erratum: Analytical results for coupled-map lattices with long-range interactions [Phys. Rev. E 68, 045202(R) (2003)] Physical Review E. ,vol. 69, pp. 029904- ,(2004) , 10.1103/PHYSREVE.69.029904
Kunihiko Kaneko, Overview of coupled map lattices Chaos: An Interdisciplinary Journal of Nonlinear Science. ,vol. 2, pp. 279- 282 ,(1992) , 10.1063/1.165869
Edward Ott, Chaos in dynamical systems ,(1993)
Qiankun Song, Jinde Cao, Synchronization and anti-synchronization for chaotic systems Chaos, Solitons & Fractals. ,vol. 33, pp. 929- 939 ,(2007) , 10.1016/J.CHAOS.2006.01.041
M. Rivera, G. Martínez Mekler, P. Parmananda, Synchronization phenomena for a pair of locally coupled chaotic electrochemical oscillators: a survey. Chaos. ,vol. 16, pp. 037105- ,(2006) , 10.1063/1.2218047
Guo-Hui Li, Shi-Ping Zhou, Anti-synchronization in different chaotic systems Chaos Solitons & Fractals. ,vol. 32, pp. 516- 520 ,(2007) , 10.1016/J.CHAOS.2006.05.076