Metabolism of β-valine via a CoA-dependent ammonia lyase pathway

作者: Marleen Otzen , Ciprian G. Crismaru , Christiaan P. Postema , Hein J. Wijma , Matthew M. Heberling

DOI: 10.1007/S00253-015-6551-Z

关键词: Amino acidLyaseValineDeaminationBiologyBiochemistryEnzymeCoenzyme ATertiary amineAmmonia-Lyases

摘要: Pseudomonas species strain SBV1 can rapidly grow on medium containing β-valine as a sole nitrogen source. The tertiary amine feature of prevents direct deamination reactions catalyzed by aminotransferases, amino acid dehydrogenases, and oxidases. However, lyase- or aminomutase-mediated conversions would be possible. To identify enzymes involved in the degradation β-valine, PsSBV1 gene library was prepared used to complement growth deficiency closely related strain. This resulted identification encoding β-valinyl-coenzyme A ligase (BvaA) two genes β-valinyl-CoA ammonia lyases (BvaB1 BvaB2). BvaA protein demonstrated high sequence identity several known phenylacetate CoA ligases. Purified enzyme did not convert phenyl acetic but able activate an adenosine triphosphate (ATP)- CoA-dependent manner. substrate range appears narrow, converting only lesser extent, 3-aminobutyrate β-alanine. Characterization BvaB1 BvaB2 revealed that both were deaminate produce 3-methylcrotonyl-CoA, common intermediate leucine pathway. Interestingly, no significant lyases, suggesting they belong new family enzymes. BLAST searches show each other enoyl-CoA hydratases, class catalyze similar reaction with water instead leaving group.

参考文章(42)
H Martínez-Blanco, A Reglero, L B Rodriguez-Aparicio, J M Luengo, Purification and biochemical characterization of phenylacetyl-CoA ligase from Pseudomonas putida. A specific enzyme for the catabolism of phenylacetic acid. Journal of Biological Chemistry. ,vol. 265, pp. 7084- 7090 ,(1990) , 10.1016/S0021-9258(19)39262-2
Gloria Herrmann, Thorsten Selmer, Holly J. Jessen, Ravi R. Gokarn, Olga Selifonova, Steve J. Gort, Wolfgang Buckel, Two beta-alanyl-CoA:ammonia lyases in Clostridium propionicum. FEBS Journal. ,vol. 272, pp. 813- 821 ,(2005) , 10.1111/J.1742-4658.2004.04518.X
Christine S. Huang, Peng Ge, Z. Hong Zhou, Liang Tong, An unanticipated architecture of the 750-kDa α6β6 holoenzyme of 3-methylcrotonyl-CoA carboxylase. Nature. ,vol. 481, pp. 219- 223 ,(2012) , 10.1038/NATURE10691
Gerrit J. Poelarends, Marga Wilkens, Michael J. Larkin, Jan Dirk van Elsas, Dick B. Janssen, Degradation of 1,3-dichloropropene by pseudomonas cichorii 170. Applied and Environmental Microbiology. ,vol. 64, pp. 2931- 2936 ,(1998) , 10.1128/AEM.64.8.2931-2936.1998
L K Massey, J R Sokatch, R S Conrad, Branched-chain amino acid catabolism in bacteria. Bacteriological Reviews. ,vol. 40, pp. 42- 54 ,(1976) , 10.1128/BR.40.1.42-54.1976
C. K. Engel, M. Mathieu, J. P. Zeelen, J. K. Hiltunen, R. K. Wierenga, Crystal structure of enoyl-coenzyme A (CoA) hydratase at 2.5 angstroms resolution: a spiral fold defines the CoA-binding pocket. The EMBO Journal. ,vol. 15, pp. 5135- 5145 ,(1996) , 10.1002/J.1460-2075.1996.TB00897.X
Alan M. Friedman, Sharon R. Long, Susan E. Brown, William J. Buikema, Frederick M. Ausubel, Construction of a broad host range cosmid cloning vector and its use in the genetic analysis of Rhizobium mutants Gene. ,vol. 18, pp. 289- 296 ,(1982) , 10.1016/0378-1119(82)90167-6
Bian Wu, Wiktor Szymański, Matthew M. Heberling, Ben L. Feringa, Dick B. Janssen, Aminomutases: mechanistic diversity, biotechnological applications and future perspectives Trends in Biotechnology. ,vol. 29, pp. 352- 362 ,(2011) , 10.1016/J.TIBTECH.2011.02.005
Todd Weaver, Leonard Banaszak, Crystallographic studies of the catalytic and a second site in fumarase C from Escherichia coli. Biochemistry. ,vol. 35, pp. 13955- 13965 ,(1996) , 10.1021/BI9614702