Best constants for two nonconvolution inequalities

作者: Michael Christ , Loukas Grafakos

DOI: 10.1090/S0002-9939-1995-1239796-6

关键词: Mathematical societyMathematicsOperator normUpper and lower boundsCombinatoricsMaximal functionMathematics Subject ClassificationMathematical analysis

摘要: The norm of the operator which averages If I in LP (Rn) over balls radius (51xl centered at either 0 or x is obtained as a function n, p and 65. Both inequalities proved are n-dimensional analogues classical inequality Hardy R1 . Finally, lower bound for Hardy-Littlewood maximal on given. 0. INTRODUCTION A result [HLP] states that if f LP(R1) > 1, then (0.1) (jt (1-J )P)ldt / d 1 (f ' f(t)nPdt) constant p/(p 1) best possible. By considering two-sided instead one-sided, can be equivalently formulated as: (0.2) ( 21l Jl f(t)ldt) dx) < If(t)IPdt) We denote by D(a, R) ball R Rn a. Let (Tf)(x) average Ifl E LP(Rn) D(O, lxl). analogue inequality: (0.3) IITfJIIP Cp(n)JJfJJIP some Cp(n) depends priori n. Our first satisfies all p' = 1), same dimension one. Another version Hardy's with possible found [F]. Next we consider similar problem. An equivalent formulation (0.4) 00 x+1X1 \p l/p { /p (L (2 Jx lf(t)Idt) dx 21/P(p1) l f(t)I dt Received editors May 5, 1993 and, revised form, September 3, 1993. 1991 Mathematics Subject Classification. Primary 42B25. authors' research was partially supported National Science Foundation. ? 1995 American Mathematical Society 0002-9939/95 $1.00 + $.25 per page

参考文章(6)
Elias M. Stein, Guido L. Weiss, Introduction to Fourier Analysis on Euclidean Spaces. ,(1971)
E. M. Stein, J. O. Strömberg, Behavior of maximal functios in Rn for large n Arkiv för Matematik. ,vol. 21, pp. 259- 269 ,(1983) , 10.1007/BF02384314
William G. Faris, Weak Lebesgue spaces and quantum mechanical binding Duke Mathematical Journal. ,vol. 43, pp. 365- 373 ,(1976) , 10.1215/S0012-7094-76-04332-5
Albert Baernstein II, B. A. Taylor, Spherical rearrangements, subharmonic functions, and $\ast$ -space Duke Mathematical Journal. ,vol. 43, pp. 245- 268 ,(1976) , 10.1215/S0012-7094-76-04322-2
S. L. Sobolev, On a theorem of functional analysis Matematicheskii Sbornik. ,vol. 4, pp. 471- 497 ,(1938)