Mineralogical and Geochemical Constraints on Magma Evolution and Late-Stage Crystallization History of the Breivikbotn Silicocarbonatite, Seiland Igneous Province in Northern Norway: Prerequisites for Zeolite Deposits in Carbonatite Complexes

作者: Dmitry Zozulya , Kåre Kullerud , Erling Ravna , Yevgeny Savchenko , Ekaterina Selivanova

DOI: 10.3390/MIN8110537

关键词: AndraditeMineralNephelineAllaniteGeologyCarbonatiteTitanitePyroxeneAmphiboleGeochemistry

摘要: The present work reports on new mineralogical and whole-rock geochemical data from the Breivikbotn silicocarbonatite (Seiland igneous province, North Norway), allowing conclusions to be drawn concerning its origin role of late fluid alteration. rock shows a rare mineral association: calcite + pyroxene amphibole zeolite group minerals garnet titanite, with apatite, allanite, magnetite zircon as minor accessory minerals, it is classified silicocarbonatite. Calcite, titanite (Di36–46 Acm22–37 Hd14–21) are primarily magmatic minerals. Amphibole mainly hastingsitic composition has formed after at late-magmatic stage. Zeolite (natrolite, gonnardite, Sr-rich thomsonite-(Ca)) were during hydrothermal alteration primary nepheline by fluids/solutions high Si-Al-Ca activities. Poikilitic (Ti-bearing andradite) inclusions all zeolites, presumably crystallized metasomatically metamorphic event (Caledonian orogeny). Whole-rock chemical compositions differs global average calciocarbonatites elevated silica, aluminium, sodium iron, but show comparable contents trace elements (REE, Sr, Ba). Trace element distributions abundances indicate within-plate tectonic setting carbonatite. spatial proximity carbonatite alkaline ultramafic (melteigite), presence “primary nepheline” in together that was derived crystal fractionation parental carbonated foidite magma. main prerequisites for extensive formation revealed.

参考文章(43)
Cheng Xu, Rex N. Taylor, Jindrich Kynicky, Anton R. Chakhmouradian, Wenlei Song, Linjun Wang, The origin of enriched mantle beneath North China block: Evidence from young carbonatites Lithos. ,vol. 127, pp. 1- 9 ,(2011) , 10.1016/J.LITHOS.2011.07.021
John A. Dalton, Bernard J. Wood, The compositions of primary carbonate melts and their evolution through wallrock reaction in the mantle Earth and Planetary Science Letters. ,vol. 119, pp. 511- 525 ,(1993) , 10.1016/0012-821X(93)90059-I
D. L. Whitney, B. W. Evans, Abbreviations for names of rock-forming minerals American Mineralogist. ,vol. 95, pp. 185- 187 ,(2010) , 10.2138/AM.2010.3371
Massimo D'Orazio, Fabrizio Innocenti, Sonia Tonarini, Carlo Doglioni, Carbonatites in a subduction system: The Pleistocene alvikites from Mt. Vulture (southern Italy) Lithos. ,vol. 98, pp. 313- 334 ,(2007) , 10.1016/J.LITHOS.2007.05.004
D. B. Dingwell, I. V. Veksler, C. Petibon, G. A. Jenner, A. M. Dorfman, Trace Element Partitioning in Immiscible Silicate–Carbonate Liquid Systems: an Initial Experimental Study Using a Centrifuge Autoclave Journal of Petrology. ,vol. 39, pp. 2095- 2104 ,(1998) , 10.1093/PETROJ/39.11-12.2095
A. R. Chakhmouradian, C. A. McCammon, Schorlomite: a discussion of the crystal chemistry, formula, and inter-species boundaries Physics and Chemistry of Minerals. ,vol. 32, pp. 277- 289 ,(2005) , 10.1007/S00269-005-0466-7
S.-s. Sun, W. F. McDonough, Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes Geological Society, London, Special Publications. ,vol. 42, pp. 313- 345 ,(1989) , 10.1144/GSL.SP.1989.042.01.19