TriGen: A genetic algorithm to mine triclusters in temporal gene expression data

作者: D. Gutiérrez-Avilés , C. Rubio-Escudero , F. Martínez-Álvarez , J.C. Riquelme

DOI: 10.1016/J.NEUCOM.2013.03.061

关键词: Cluster analysisGenetic algorithmBiclusteringMicroarray analysis techniquesGene expressionGeneComputational biologyComputer scienceData miningSynthetic data

摘要: Analyzing microarray data represents a computational challenge due to the characteristics of these data. Clustering techniques are widely applied create groups genes that exhibit similar behavior under conditions tested. Biclustering emerges as an improvement classical clustering since it relaxes constraints for grouping be evaluated only subset and not all them. However, this technique is appropriate analysis longitudinal experiments in which certain at several time points. We present TriGen algorithm, genetic algorithm finds triclusters gene expression take into account experimental points simultaneously. have used mine datasets related synthetic data, yeast (Saccharomyces cerevisiae) cell cycle human inflammation host response injury experiments. has proved capable extracting with patterns subsets times, shown terms their functional annotations extracted from Gene Ontology.

参考文章(44)
Meng P Tan, Erin N Smith, James R Broach, Christodoulos A Floudas, Microarray data mining: A novel optimization-based approach to uncover biologically coherent structures BMC Bioinformatics. ,vol. 9, pp. 268- 268 ,(2008) , 10.1186/1471-2105-9-268
Roy P. Pargas, Mary Jean Harrold, Robert R. Peck, Test-data generation using genetic algorithms Software Testing, Verification and Reliability. ,vol. 9, pp. 263- 282 ,(1999) , 10.1002/(SICI)1099-1689(199912)9:4<263::AID-STVR190>3.0.CO;2-Y
Lizhuang Zhao, Mohammed J. Zaki, TRICLUSTER Proceedings of the 2005 ACM SIGMOD international conference on Management of data - SIGMOD '05. pp. 694- 705 ,(2005) , 10.1145/1066157.1066236
J. A. Hartigan, Direct Clustering of a Data Matrix Journal of the American Statistical Association. ,vol. 67, pp. 123- 129 ,(1972) , 10.1080/01621459.1972.10481214
D. Gutierrez-Aviles, C. Rubio-Escudero, J. C. Riquelme, Revisiting the yeast cell cycle problem with the improved TriGen algorithm nature and biologically inspired computing. pp. 515- 520 ,(2011) , 10.1109/NABIC.2011.6089642
Sushmita Mitra, Haider Banka, Multi-objective evolutionary biclustering of gene expression data Pattern Recognition. ,vol. 39, pp. 2464- 2477 ,(2006) , 10.1016/J.PATCOG.2006.03.003
Amir Ben-Dor, Benny Chor, Richard Karp, Zohar Yakhini, Discovering local structure in gene expression data: the order-preserving submatrix problem. Journal of Computational Biology. ,vol. 10, pp. 373- 384 ,(2003) , 10.1089/10665270360688075
Jorge Reyes, Víctor H. Cárdenas, A Chilean seismic regionalization through a Kohonen neural network Neural Computing and Applications. ,vol. 19, pp. 1081- 1087 ,(2010) , 10.1007/S00521-010-0373-9
M. Martínez-Ballesteros, F. Martínez-Álvarez, A. Troncoso, J. C. Riquelme, An evolutionary algorithm to discover quantitative association rules in multidimensional time series Soft Computing. ,vol. 15, pp. 2065- 2084 ,(2011) , 10.1007/S00500-011-0705-4