Body Sensor Network Based Context Aware QRS Detection

作者: Huaming Li , Jindong Tan

DOI: 10.1109/IEMBS.2006.260253

关键词: AccelerometerTelemetryDetectorContext (language use)SignalWireless sensor networkPattern recognitionArtificial intelligenceEngineeringNoiseReal-time computingQRS complex

摘要: In this paper, a body sensor network (BSN) based context aware QRS detection scheme is proposed. The algorithm uses the information provided by to improve performance dynamically selecting leads with best SNR and taking advantage of features two complementary algorithms. accelerometer data from BSN are used classify patients' daily activity provide information. classification results indicate both type activities their corresponding intensity, which related signal/noise ratio ECG recordings. Activity intensity first fed lead selector eliminate low SNR, then for proper detector according noise level. MIT-BIH stress test database evaluate

参考文章(13)
D S Berman, A Rozanski, S B Knoebel, The detection of silent ischemia: cautions and precautions Circulation. ,vol. 75, pp. 101- 105 ,(1987) , 10.1161/01.CIR.75.1.101
F. Portet, A. I. Hernández, G. Carrault, Evaluation of real-time QRS detection algorithms in variable contexts. Medical & Biological Engineering & Computing. ,vol. 43, pp. 379- 385 ,(2005) , 10.1007/BF02345816
Timo H Mäkikallio, Heikki V Huikuri, Anne Mäkikallio, Leif B Sourander, Raul D Mitrani, Agustin Castellanos, Robert J Myerburg, Prediction of sudden cardiac death by fractal analysis of heart rate variability in elderly subjects Journal of the American College of Cardiology. ,vol. 37, pp. 1395- 1402 ,(2001) , 10.1016/S0735-1097(01)01171-8
Rachel Marcus, Robert Lowe, Victor F. Froelicher, Dat Do, The Exercise Test as Gatekeeper : Limiting Access or Appropriately Directing Resources? Chest. ,vol. 107, pp. 1442- 1446 ,(1995) , 10.1378/CHEST.107.5.1442
B.-U. Kohler, C. Hennig, R. Orglmeister, The principles of software QRS detection IEEE Engineering in Medicine and Biology Magazine. ,vol. 21, pp. 42- 57 ,(2002) , 10.1109/51.993193
G.M. Friesen, T.C. Jannett, M.A. Jadallah, S.L. Yates, S.R. Quint, H.T. Nagle, A comparison of the noise sensitivity of nine QRS detection algorithms IEEE Transactions on Biomedical Engineering. ,vol. 37, pp. 85- 98 ,(1990) , 10.1109/10.43620
Peter F. Cohn, Kim M. Fox, Caroline Daly, , Silent Myocardial Ischemia Circulation. ,vol. 108, pp. 1263- 1277 ,(2003) , 10.1161/01.CIR.0000088001.59265.EE
W. Zong, G.B. Moody, D. Jiang, A robust open-source algorithm to detect onset and duration of QRS complexes computing in cardiology conference. pp. 737- 740 ,(2003) , 10.1109/CIC.2003.1291261
D.M. Karantonis, M.R. Narayanan, M. Mathie, N.H. Lovell, B.G. Celler, Implementation of a real-time human movement classifier using a triaxial accelerometer for ambulatory monitoring international conference of the ieee engineering in medicine and biology society. ,vol. 10, pp. 156- 167 ,(2006) , 10.1109/TITB.2005.856864
Juha Parkka, Miikka Ermes, Panu Korpipaa, Jani Mantyjarvi, Johannes Peltola, Ilkka Korhonen, Activity classification using realistic data from wearable sensors international conference of the ieee engineering in medicine and biology society. ,vol. 10, pp. 119- 128 ,(2006) , 10.1109/TITB.2005.856863