Mixture Density Mercer Kernels: A Method to Learn Kernels Directly from Data.

作者: Ashok N. Srivastava

DOI:

关键词: Tree kernelMixture modelPattern recognitionMixture distributionArtificial intelligenceVariable kernel density estimationKernel (statistics)Computer scienceKernel embedding of distributionsProbabilistic logicSynthetic data

摘要: This paper presents a method of generating Mercer Kernels from an ensemble probabilistic mixture models, where each model is generated Bayesian density estimate. We show how to convert the estimates into Kernel, describe properties this new kernel function, and give examples performance on unsupervised clustering synthetic data also in domain multispectral image understanding.

参考文章(17)
Robert Tibshirani, Trevor Hastie, Jerome H. Friedman, The Elements of Statistical Learning ,(2001)
John Stutz, Peter Cheeseman, Bayesian classification (AutoClass): theory and results knowledge discovery and data mining. pp. 153- 180 ,(1996)
James Franklin, The elements of statistical learning : data mining, inference,and prediction The Mathematical Intelligencer. ,vol. 27, pp. 83- 85 ,(2005) , 10.1007/BF02985802
William G. Macready, Density Estimation with Mercer Kernels ,(2003)
D. Haussler, Convolution kernels on discrete structures Tech. Rep.. ,(1999)
Nello Cristianini, J Shawe-Taylor, An introduction to Support Vector Machines Cambridge University Press (2000). ,(2000)
W. L. Buntine, Operations for learning with graphical models Journal of Artificial Intelligence Research. ,vol. 2, pp. 159- 225 ,(1994) , 10.1613/JAIR.62
A. P. Dempster, N. M. Laird, D. B. Rubin, Maximum Likelihood from Incomplete Data Via theEMAlgorithm Journal of the Royal Statistical Society: Series B (Methodological). ,vol. 39, pp. 1- 22 ,(1977) , 10.1111/J.2517-6161.1977.TB01600.X
Alexander Strehl, Joydeep Ghosh, Cluster ensembles --- a knowledge reuse framework for combining multiple partitions Journal of Machine Learning Research. ,vol. 3, pp. 583- 617 ,(2003) , 10.1162/153244303321897735
Koji Tsuda, Motoaki Kawanabe, Gunnar Rätsch, Sören Sonnenburg, Klaus-Robert Müller, A New Discriminative Kernel From Probabilistic Models neural information processing systems. ,vol. 14, pp. 977- 984 ,(2001) , 10.1162/08997660260293274