Parameter identification for proton exchange membrane fuel cell model using particle swarm optimization

作者: M YE , X WANG , Y XU

DOI: 10.1016/J.IJHYDENE.2008.11.026

关键词: Control theoryComputer scienceParticle swarm optimizationRange (aeronautics)Identification (information)Work (thermodynamics)Noise (signal processing)Proton exchange membrane fuel cellElectric power systemDesign analysis

摘要: Abstract The accurate mathematical model is an extremely useful tool for simulation and design analysis of fuel cell power systems. Particle swarm optimization (PSO) a recently invented high-performance algorithm. In this work, PSO-based parameter identification technique proton exchange membrane (PEM) models was proposed in terms the voltage–current characteristics. Using simulated experimental data, validity method has been confirmed. results indicate that PSO effective identifying parameters PEM even presence measuring noise. Moreover, does not particularly necessitate initial guesses as close possible to solutions, required only broad range specified each parameters. Therefore, outperforms GA traditional methods.

参考文章(47)
Z.-L. Gaing, A particle swarm optimization approach for optimum design of PID controller in AVR system IEEE Transactions on Energy Conversion. ,vol. 19, pp. 384- 391 ,(2004) , 10.1109/TEC.2003.821821
S. Naka, T. Genji, T. Yura, Y. Fukuyama, A hybrid particle swarm optimization for distribution state estimation IEEE Transactions on Power Systems. ,vol. 18, pp. 60- 68 ,(2002) , 10.1109/TPWRS.2002.807051
H. Yoshida, K. Kawata, Y. Fukuyama, S. Takayama, Y. Nakanishi, A particle swarm optimization for reactive power and voltage control considering voltage security assessment IEEE Transactions on Power Systems. ,vol. 15, pp. 1232- 1239 ,(2000) , 10.1109/59.898095
A.J.-J. Kadjo, P. Brault, A. Caillard, C. Coutanceau, J.-P. Garnier, S. Martemianov, Improvement of proton exchange membrane fuel cell electrical performance by optimization of operating parameters and electrodes preparation Journal of Power Sources. ,vol. 172, pp. 613- 622 ,(2007) , 10.1016/J.JPOWSOUR.2007.05.019
Xue Wang, Jun-Jie Ma, Sheng Wang, Dao-Wei Bi, Cluster-based Dynamic Energy Management for Collaborative Target Tracking in Wireless Sensor Networks Sensors. ,vol. 7, pp. 1193- 1215 ,(2007) , 10.3390/S7071193
Riccardo Poli, James Kennedy, Tim Blackwell, Particle swarm optimization Swarm Intelligence. ,vol. 1, pp. 33- 57 ,(2007) , 10.1007/S11721-007-0002-0
J. C. Amphlett, R. M. Baumert, R. F. Mann, B. A. Peppley, P. R. Roberge, T. J. Harris, Performance modeling of the Ballard Mark IV solid polymer electrolyte fuel cell. II: Empirical model development Journal of The Electrochemical Society. ,vol. 142, pp. 9- 15 ,(1995) , 10.1149/1.2043959
Yuhui Shi, Russell C. Eberhart, Parameter Selection in Particle Swarm Optimization Evolutionary Programming. pp. 591- 600 ,(1998) , 10.1007/BFB0040810
Xing-Jin Sun, Guang-Yi Cao, Xin-Jian Zhu, A Novel Genetic Algorithm and its Application in Fuzzy Variable Structure Control of Fuel Cell Journal of Intelligent and Robotic Systems. ,vol. 31, pp. 299- 316 ,(2001) , 10.1023/A:1012091311364
Dawn M. Bernardi, Mark W. Verbrugge, Mathematical model of a gas diffusion electrode bonded to a polymer electrolyte AIChE Journal. ,vol. 37, pp. 1151- 1163 ,(1991) , 10.1002/AIC.690370805