The symplectic topology of projective manifolds with small dual

作者: Yochay Jerby , Paul Biran

DOI:

关键词: Geometry and topologyAlgebraSymplectomorphismSymplectic manifoldMoment mapMathematicsQuantum cohomologySymplectic geometryProjective spaceSymplectic representation

摘要: We study smooth projective varieties with small dual variety using methods from symplectic topology. prove the affine parts of such are subcritical, and that hyperplane class is invertible in their quantum cohomology. derive several topological algebraic geometric consequences that. The main tool our work Seidel representation associated to Hamiltonian fibrations.

参考文章(26)
Steven L. Kleiman, About the conormal scheme Springer, Berlin, Heidelberg. pp. 161- 197 ,(1984) , 10.1007/BFB0099362
Octav Cornea, Paul Biran, Quantum Structures for Lagrangian Submanifolds arXiv: Symplectic Geometry. ,(2007)
S. K. Donaldson, Lefschetz pencils on symplectic manifolds Journal of Differential Geometry. ,vol. 53, pp. 205- 236 ,(1999) , 10.4310/JDG/1214425535
S. K. Donaldson, Symplectic submanifolds and almost-complex geometry Journal of Differential Geometry. ,vol. 44, pp. 666- 705 ,(1996) , 10.4310/JDG/1214459407
Dennis M. Snow, The nef value and defect of homogeneous line bundles Transactions of the American Mathematical Society. ,vol. 340, pp. 227- 241 ,(1993) , 10.1090/S0002-9947-1993-1144015-8
Mauro C. Beltrametti, M. Lucia Fania, Andrew J. Sommese, On the discriminant variety of a projective manifold Forum Mathematicum. ,vol. 4, pp. 529- 548 ,(1992) , 10.1515/FORM.1992.4.529
P. Biran, Lagrangian non-intersections Geometric and Functional Analysis. ,vol. 16, pp. 279- 326 ,(2006) , 10.1007/S00039-006-0560-0
Matthew Strom Borman, Symplectic reduction of quasi-morphisms and quasi-states arXiv: Symplectic Geometry. ,(2010) , 10.4310/JSG.2012.V10.N2.A4
P. Biran, K. Cieliebak, Symplectic topology on subcritical manifolds Commentarii Mathematici Helvetici. ,vol. 76, pp. 712- 753 ,(2001) , 10.1007/S00014-001-8326-7