A PRIMAL-DUAL TRUST REGION ALGORITHM FOR NONLINEAR

作者: Philip E. Gill , E. Michael Gertz

DOI:

关键词: Second derivativeNonlinear programmingLine searchNonlinear systemMathematical optimizationInertiaScalar (mathematics)MathematicsTrust regionLinear system

摘要: This paper concerns general (nonconvex) nonlinear optimization when rst and second derivatives of the objective constraint functions are available. The proposed method is based on nding an approximate solution a sequence unconstrained subproblems pa- rameterized by scalar parameter. function each subproblem augmented penalty-barrier that involves both primal dual variables. Each solved using second-derivative Newton-type employs combined trust-region line search strategy to ensure global convergence. It shown trust- region step can be computed factorizing systems with diagonally-modie d primal-dual structure, where inertia these determined without recourse special factorization method. has benet o-the-shelf linear system software used at all times, allowing straightforward extension large-scale problems.

参考文章(46)
Philip Gill, Edward Michael Gertz, Combination trust-region line-search methods for unconstrained optimization University of California, San Diego. ,(1999)
M. Argáez, R. A. Tapia, On the global convergence of a modified augmented Lagrangian linesearch interior-point Newton method for nonlinear programming Journal of Optimization Theory and Applications. ,vol. 114, pp. 1- 25 ,(2002) , 10.1023/A:1015451203254
Robert J. Vanderbei, David F. Shanno, An Interior-Point Algorithm for Nonconvex Nonlinear Programming Computational Optimization and Applications. ,vol. 13, pp. 231- 252 ,(1999) , 10.1023/A:1008677427361
David M. Gay, Michael L. Overton, Margaret H. Wright, A Primal-dual Interior Method for Nonconvex Nonlinear Programming Springer, Boston, MA. pp. 31- 56 ,(1998) , 10.1007/978-1-4613-3335-7_2
Hande Y. Benson, Robert J. Vanderbei, David F. Shanno, Interior-Point Methods for Nonconvex Nonlinear Programming: Filter Methods and Merit Functions Computational Optimization and Applications. ,vol. 23, pp. 257- 272 ,(2002) , 10.1023/A:1020533003783
Andrew R. Conn, Nicholas I. M. Gould, Philippe L. Toint, A primal-dual algorithm for minimizing a non-convex function subject to bound and linear equality constraints Applied Optimization. pp. 15- 49 ,(2000) , 10.1007/978-1-4757-3226-9_2
Nicholas J. Higham, Analysis of the Cholesky Decomposition of a Semi-definite Matrix Oxford University Press. ,(1990)
Michael Ulbrich, Stefan Ulbrich, Lu�s N. Vicente, A globally convergent primal-dual interior-point filter method for nonlinear programming Mathematical Programming. ,vol. 100, pp. 379- 410 ,(2004) , 10.1007/S10107-003-0477-4
NICHOLAS IAN MARK GOULD, On the Accurate Determination of Search Directions for Simple Differentiable Penalty Functions Ima Journal of Numerical Analysis. ,vol. 6, pp. 357- 372 ,(1986) , 10.1093/IMANUM/6.3.357