Outlier Detection in Urban Traffic Data

作者: Youcef Djenouri , Arthur Zimek

DOI: 10.1145/3227609.3227692

关键词: Pattern analysisData miningAnomaly detectionDistance measuresStatistical modelComputer scienceIntuitionLocality

摘要: This paper provides a summary of the tutorial on outlier detection in urban traffic data. We present existing solutions three main categories: statistical techniques, similarity-based and techniques based pattern analysis. The first category groups employing models to identify anomalies second using distance measures neighborhoods derive local density estimates. third explores correlation between flow values by concepts from explain discuss example for each category, we outline perspectives open questions research challenges. relate general view notion locality, i.e., context reference used definition comparison outlierness, order gain better understanding intuition, limitations, benefits various methods traffic. way, hope provide some guidance practitioners selecting most suitable their case.

参考文章(108)
A. J. Fox, Outliers in Time Series Journal of the Royal Statistical Society: Series B (Methodological). ,vol. 34, pp. 350- 363 ,(1972) , 10.1111/J.2517-6161.1972.TB00912.X
Chang-Tien Lu, Yufeng Kou, Dechang Chen, Spatial Weighted Outlier Detection. siam international conference on data mining. pp. 614- 618 ,(2006)
Elke Achtert, Ahmed Hettab, Hans-Peter Kriegel, Erich Schubert, Arthur Zimek, Spatial outlier detection: data, algorithms, visualizations symposium on large spatial databases. pp. 512- 516 ,(2011) , 10.1007/978-3-642-22922-0_41
Ira Assent, Philipp Kranen, Corinna Baldauf, Thomas Seidl, AnyOut: Anytime Outlier Detection on Streaming Data Database Systems for Advanced Applications. pp. 228- 242 ,(2012) , 10.1007/978-3-642-29038-1_18
Arthur Zimek, Hans-Peter Kriegel, Erich Schubert, Peer Kröger, Interpreting and Unifying Outlier Scores siam international conference on data mining. pp. 13- 24 ,(2011)
Hans-Peter Kriegel, Peer Kröger, Erich Schubert, Arthur Zimek, Outlier Detection in Axis-Parallel Subspaces of High Dimensional Data Advances in Knowledge Discovery and Data Mining. pp. 831- 838 ,(2009) , 10.1007/978-3-642-01307-2_86
Erich Schubert, Arthur Zimek, Hans-Peter Kriegel, Fast and Scalable Outlier Detection with Approximate Nearest Neighbor Ensembles database systems for advanced applications. pp. 19- 36 ,(2015) , 10.1007/978-3-319-18123-3_2
Maria Kontaki, Anastasios Gounaris, Apostolos N. Papadopoulos, Kostas Tsichlas, Yannis Manolopoulos, Efficient and flexible algorithms for monitoring distance-based outliers over data streams Information Systems. ,vol. 55, pp. 37- 53 ,(2016) , 10.1016/J.IS.2015.07.006
Linsey Xiaolin Pang, Sanjay Chawla, Wei Liu, Yu Zheng, On Mining Anomalous Patterns in Road Traffic Streams Advanced Data Mining and Applications. pp. 237- 251 ,(2011) , 10.1007/978-3-642-25856-5_18
Fabrizio Angiulli, Clara Pizzuti, Fast Outlier Detection in High Dimensional Spaces european conference on principles of data mining and knowledge discovery. pp. 15- 26 ,(2002) , 10.1007/3-540-45681-3_2