On the link between dependence and independence in extreme value theory for dynamical systems

作者: Ana Cristina Moreira Freitas , Jorge Milhazes Freitas

DOI: 10.1016/J.SPL.2007.11.002

关键词: Statistical physicsCalculusDynamical systems theoryIndependence (mathematical logic)Dynamical systemMixing (physics)Systems theoryExtreme value theoryMathematicsProbability theoryContext (language use)

摘要: We reformulate the standard conditions that allow to reduce study of extremes for dependent sequences classical extreme value theory. Essentially, we weaken mixing type condition in such a way that, context dynamical systems, it should follow from decay correlations.

参考文章(6)
George Haiman, Extreme values of the tent map process Statistics & Probability Letters. ,vol. 65, pp. 451- 456 ,(2003) , 10.1016/J.SPL.2003.10.008
P. COLLET, Statistics of closest return for some non-uniformly hyperbolic systems Ergodic Theory and Dynamical Systems. ,vol. 21, pp. 401- 420 ,(2001) , 10.1017/S0143385701001201
F. A. C. Sevier, William Feller, An Introduction to Probability Theory and Its Applications. American Mathematical Monthly. ,vol. 59, pp. 265- ,(1952) , 10.2307/2306534
ANA CRISTINA MOREIRA FREITAS, JORGE MILHAZES FREITAS, Extreme values for Benedicks-Carleson quadratic maps Ergodic Theory and Dynamical Systems. ,vol. 28, pp. 1117- 1133 ,(2008) , 10.1017/S0143385707000624