Martin’s axiom does not imply that every two ℕ1-dense sets of reals are isomorphic

作者: Uri Avraham , Saharon Shelah

DOI: 10.1007/BF02761858

关键词: New FoundationsDiscrete mathematicsMartin's axiomVon Neumann–Bernays–Gödel set theoryMathematicsCombinatoricsUncountable setConsistency (knowledge bases)Set (abstract data type)Function (mathematics)Monotonic function

摘要: … These imply that there are uncountable real functions which do not include any uncountable monotonic functions. The question about the consistence of (5) was asked, independently, …

参考文章(5)
Fred Galvin, Saharon Shelah, Some counterexamples in the partition calculus Journal of Combinatorial Theory, Series A. ,vol. 15, pp. 167- 174 ,(1973) , 10.1016/S0097-3165(73)80004-4
P. Dienes, W. Sierpinski, Hypothese du continu The Mathematical Gazette. ,vol. 19, pp. 146- ,(1935) , 10.2307/3608040
James Baumgartner, Αll $ℵ_1$-dense sets of reals can be isomorphic Fundamenta Mathematicae. ,vol. 79, pp. 101- 106 ,(1973) , 10.4064/FM-79-2-101-106
R. M. Solovay, S. Tennenbaum, Iterated Cohen Extensions and Souslin's Problem The Annals of Mathematics. ,vol. 94, pp. 201- ,(1971) , 10.2307/1970860