Adaptive local thresholding for detection of nuclei in diversity stained cytology images

作者: Neerad Phansalkar , Sumit More , Ashish Sabale , Madhuri Joshi

DOI: 10.1109/ICCSP.2011.5739305

关键词: ThresholdingImage segmentationComputer scienceArtificial intelligencePixelPattern recognitionComputer visionSegmentationBalanced histogram thresholdingCytologyColor space

摘要: Accurate cell nucleus segmentation is necessary for automated cytological image analysis. Thresholding is a crucial step in segmentation. The accuracy of segmentation depends on …

参考文章(7)
Faisal Shafait, Daniel Keysers, Thomas M. Breuel, Efficient implementation of local adaptive thresholding techniques using integral images document recognition and retrieval. ,vol. 6815, pp. 681510- ,(2008) , 10.1117/12.767755
Catherine Garbay, Image Structure Representation and Processing: A Discussion of Some Segmentation Methods in Cytology IEEE Transactions on Pattern Analysis and Machine Intelligence. ,vol. PAMI-8, pp. 140- 146 ,(1986) , 10.1109/TPAMI.1986.4767768
J. Sauvola, M. Pietikäinen, Adaptive document image binarization Pattern Recognition. ,vol. 33, pp. 225- 236 ,(2000) , 10.1016/S0031-3203(99)00055-2
Mehmet Sezgin, Bu¨ lent Sankur, Survey over image thresholding techniques and quantitative performance evaluation Journal of Electronic Imaging. ,vol. 13, pp. 146- 165 ,(2004) , 10.1117/1.1631315
Nobuyuki Otsu, A Threshold Selection Method from Gray-Level Histograms IEEE Transactions on Systems, Man, and Cybernetics. ,vol. 9, pp. 62- 66 ,(1979) , 10.1109/TSMC.1979.4310076
H.D. Cheng, X.H. Jiang, Y. Sun, Jingli Wang, Color image segmentation: advances and prospects Pattern Recognition. ,vol. 34, pp. 2259- 2281 ,(2001) , 10.1016/S0031-3203(00)00149-7
Paul Viola, Michael J. Jones, Robust Real-Time Face Detection International Journal of Computer Vision. ,vol. 57, pp. 137- 154 ,(2004) , 10.1023/B:VISI.0000013087.49260.FB