Controlling the Two Kinds of Error Rate in Selecting an Appropriate Asymmetric MDS Model

作者: Shingo Saburi , Naohito Chino

DOI:

关键词: Restricted maximum likelihoodStatisticsLikelihood-ratio testMultidimensional scalingScore testStatisticContext (language use)MathematicsMaximum likelihood sequence estimationLikelihood function

摘要: ASYMMAXSCAL is revisited first, which a maximum likelihood asymmetric multidimensional scaling method recently proposed by Saburi and Chino (2008). It proven that the ratio test statistic on quasi-symmetry hypothesis Caussinus (1965) of marginal homogeneity suggested Andersen (1980) are mutually independent statistically. A possible application this theorem indicated to relational data in context scaling.

参考文章(46)
Mark de Rooij, Willem J. Heiser, A Distance Representation of the Quasi-Symmetry Model and Related Distance Models New Developments in Psychometrics. pp. 487- 494 ,(2003) , 10.1007/978-4-431-66996-8_55
Martin W. Birch, Maximum Likelihood in Three-Way Contingency Tables Springer Series in Statistics. ,vol. 25, pp. 462- 477 ,(1992) , 10.1007/978-1-4612-4380-9_33
Nickolay T. Trendafilov, GIPSCAL revisited. A projected gradient approach Statistics and Computing. ,vol. 12, pp. 135- 145 ,(2002) , 10.1023/A:1014882518644
Albert H. Bowker, A Test for Symmetry in Contingency Tables Journal of the American Statistical Association. ,vol. 43, pp. 572- 574 ,(1948) , 10.1080/01621459.1948.10483284
Campbell B. Read, Tests of symmetry in three-way contingency tables Psychometrika. ,vol. 43, pp. 409- 420 ,(1978) , 10.1007/BF02293649
Naohito Chino, A Generalized Inner Product Model for the Analysis of Asymmetry Behaviormetrika. ,vol. 17, pp. 25- 46 ,(1990) , 10.2333/BHMK.17.27_25