The maximum principle and sign changing solutions of the hyperbolic equation with the Higgs potential

作者: Karen Yagdjian , Andras Balogh

DOI:

关键词: Mathematical physicsMaximum principleDe Sitter universeSign changingLinear equationHyperbolic partial differential equationSpacetimeHiggs bosonPhysics

摘要: In this article we discuss the maximum principle for linear equation and sign changing solutions of semilinear with Higgs potential. Numerical simulations indicate that bubbles Klein-Gordon in de Sitter spacetime are created apparently exist all times.

参考文章(18)
Alexander Weinstein, On a cauchy problem with subharmonic initial values Annali di Matematica Pura ed Applicata. ,vol. 43, pp. 325- 340 ,(1957) , 10.1007/BF02411913
N. A. Voronov, L. Dyshko, N. B. Konyukhova, On the stability of a self-similar spherical bubble of a scalar Higgs field in de Sitter space Physics of Atomic Nuclei. ,vol. 68, pp. 1218- 1226 ,(2005) , 10.1134/1.1992577
Peter W. Higgs, Broken Symmetries and the Masses of Gauge Bosons Physical Review Letters. ,vol. 13, pp. 508- 509 ,(1964) , 10.1103/PHYSREVLETT.13.508
Sergiu Klainerman, Global existence for nonlinear wave equations Communications on Pure and Applied Mathematics. ,vol. 33, pp. 43- 101 ,(1980) , 10.1002/CPA.3160330104
S. Sonego, V. Faraoni, Huygens’ principle and characteristic propagation property for waves in curved space‐times Journal of Mathematical Physics. ,vol. 33, pp. 625- 632 ,(1992) , 10.1063/1.529798
D. Sather, A maximum property of Cauchy's problem for the wave operator Archive for Rational Mechanics and Analysis. ,vol. 21, pp. 303- 309 ,(1966) , 10.1007/BF00282250
András Vasy, The wave equation on asymptotically de Sitter-like spaces Advances in Mathematics. ,vol. 223, pp. 49- 97 ,(2010) , 10.1016/J.AIM.2009.07.005
Stephen W. Hawking, George Francis Rayner Ellis, The Large Scale Structure of Space-Time ,(1973)
Henri Epstein, Ugo Moschella, de Sitter Tachyons and Related Topics Communications in Mathematical Physics. ,vol. 336, pp. 381- 430 ,(2015) , 10.1007/S00220-015-2308-X