THE GENERAL STRAIN TENSOR

作者: Z. KARNI

DOI: 10.1016/B978-0-08-012822-1.50010-3

关键词: Infinitesimal strain theoryTensor contractionTensorPure mathematicsInvariants of tensorsIsotropyTensor fieldCartesian tensorMathematical physicsFinite strain theoryMathematics

摘要: ABSTRACT Based on the most general isotropy between two second-order asymmetric tensors, shown to be reducible a finite form, survey of theory for isotropic strain tensor is presented. Application specifically made first-and theory. To motivate directions in three-dimensional space vector invariants absolute notation vectors and tensors preferred.

参考文章(10)
C. Truesdell, R. Toupin, The Classical Field Theories Handbuch der Physik. ,vol. 2, pp. 226- 858 ,(1960) , 10.1007/978-3-642-45943-6_2
R. S. Rivlin, J. L. Ericksen, Stress-Deformation Relations for Isotropic Materials Indiana University Mathematics Journal. ,vol. 4, pp. 911- 1013 ,(1955) , 10.1007/978-1-4612-2416-7_61
Meir Hanin, Markus Reiner, On isotropic tensor-functions and the measure of deformation Zeitschrift für angewandte Mathematik und Physik ZAMP. ,vol. 7, pp. 377- 393 ,(1956) , 10.1007/BF01606325
C. Truesdell, The mechanical foundations of elasticity and fluid dynamics Indiana University Mathematics Journal. ,vol. 1, pp. 125- 300 ,(1952) , 10.1512/IUMJ.1952.1.51005
A. E. Green, R. S. Rivlin, The Mechanics of Non-Linear Materials with Memory Archive for Rational Mechanics and Analysis. ,vol. 4, pp. 387- 404 ,(1959) , 10.1007/BF00281398
Francis Dominic Murnaghan, Finite Deformation of an Elastic Solid ,(1967)
R. S. Rivlin, Further Remarks on the Stress-Deformation Relations for Isotropic Materials Indiana University Mathematics Journal. ,vol. 4, pp. 1014- 1035 ,(1955) , 10.1007/978-1-4612-2416-7_62
M. Reiner, A Mathematical Theory of Dilatancy American Journal of Mathematics. ,vol. 67, pp. 350- ,(1945) , 10.2307/2371950
R. S. Rivlin, Constitutive Equations for Classes of Deformations Viscoelasticity#R##N#Phenomenological Aspects. pp. 1176- 1191 ,(1997) , 10.1007/978-1-4612-2416-7_74
F. D. Murnaghan, Finite Deformations of an Elastic Solid American Journal of Mathematics. ,vol. 59, pp. 235- None ,(1937) , 10.2307/2371405