Anisotropies in Kaluza-Klein quantum cosmology

作者: Keita Ikumi , Katsuhiko Sato

DOI: 10.1016/S0550-3213(97)00004-7

关键词: Function (mathematics)UniverseQuantum cosmologyBoundary value problemDimension (vector space)Imaginary timeIsotropyTheoretical physicsKaluza–Klein theoryPhysics

摘要: Abstract We study the behavior of anisotropies in Bianchi IX universe with one extra dimension under Hartle-Hawking boundary condition. The evolution metric components imaginary time is presented paying special attention to difference from those case without dimension. confirmed be generally more rapid when present and this makes region mini-superspace where wave function has significant value a little larger. difference, however, brought about by internal space small. find that non-trivial for certain non-zero even they are relatively large. This implies primordial was anisotropic rather than isotropic.

参考文章(17)
John D. Barrow, Why the Universe is not anisotropic. Physical Review D. ,vol. 51, pp. 3113- 3116 ,(1995) , 10.1103/PHYSREVD.51.3113
H. Ishihara, K. Tomita, H. Nariai, Some Higher Demensional Vacuum Solutions of Einstein Equations with a Cosmological Constant Progress of Theoretical Physics. ,vol. 71, pp. 859- 861 ,(1984) , 10.1143/PTP.71.859
Y Kitada, K Maeda, Cosmic no-hair theorem in homogeneous spacetimes. I. Bianchi models Classical and Quantum Gravity. ,vol. 10, pp. 703- 734 ,(1993) , 10.1088/0264-9381/10/4/008
John D Barrow, J Stein-Schabes, None, Kaluza-Klein mixmaster universes Physical Review D. ,vol. 32, pp. 1595- 1596 ,(1985) , 10.1103/PHYSREVD.32.1595
Piotr Amsterdamski, Wave function of an anisotropic universe Physical Review D. ,vol. 31, pp. 3073- 3078 ,(1985) , 10.1103/PHYSREVD.31.3073
Sergio Del Campo, Alexander Vilenkin, Tunneling wavefunction for an anisotropic universe Physics Letters B. ,vol. 224, pp. 45- 48 ,(1989) , 10.1016/0370-2693(89)91047-2
Jacques Demaret, Jean-Luc Hanquin, Marc Henneaux, Philipe Spindel, Anne Taormina, The fate of the mixmaster behaviour in vacuum inhomogeneous Kaluza-Klein cosmological models Physics Letters B. ,vol. 175, pp. 129- 132 ,(1986) , 10.1016/0370-2693(86)90701-X
Jun'ichi Yokoyama, Kei-ichi Maeda, Quantum cosmological approach to the cosmic no-hair conjecture in the Bianchi type-IX spacetime. Physical Review D. ,vol. 41, pp. 1047- 1053 ,(1990) , 10.1103/PHYSREVD.41.1047
Yasuhiro Okada, Inflation in Kaluza-Klein cosmology Physics Letters B. ,vol. 150, pp. 103- 106 ,(1985) , 10.1016/0370-2693(85)90148-0
W.A. Wright, I.G. Moss, The anisotropy of the universe Physics Letters B. ,vol. 154, pp. 115- 119 ,(1985) , 10.1016/0370-2693(85)90569-6