Shear Stress Increases the Residence Time of Adhesion of Pseudomonas aeruginosa

作者: Sigolene Lecuyer , Roberto Rusconi , Yi Shen , Alison Forsyth , Hera Vlamakis

DOI: 10.1016/J.BPJ.2010.11.078

关键词: Shear stressFimbriae ProteinsBiophysicsShear (geology)PilusFlagellumMicrobiologyPseudomonas aeruginosaBacteriaExtracellular matrixChemistry

摘要: Although ubiquitous, the processes by which bacteria colonize surfaces remain poorly understood. Here we report results for influence of wall shear stress on early-stage adhesion Pseudomonas aeruginosa PA14 glass and polydimethylsiloxane surfaces. We use image analysis to measure residence time each adhering bacterium under flow. Our main finding is that, either surface, characteristic increases approximately linearly as (∼0–3.5 Pa). To investigate this phenomenon, used mutant strains defective in surface organelles (type I pili, type IV or flagellum) extracellular matrix production. show although these bacterial features frequency events detachment probability, none them responsible trend shear-enhanced time. These observations bring what believe are new insights into mechanism attachment flows, suggest a role other intrinsic cell dynamic response stress.

参考文章(37)
Lisa Friedman, Roberto Kolter, Genes involved in matrix formation in Pseudomonas aeruginosa PA14 biofilms Molecular Microbiology. ,vol. 51, pp. 675- 690 ,(2003) , 10.1046/J.1365-2958.2003.03877.X
Albert M. Ding, Robert J. Palmer, John O. Cisar, Paul E. Kolenbrander, Shear-Enhanced Oral Microbial Adhesion Applied and Environmental Microbiology. ,vol. 76, pp. 1294- 1297 ,(2010) , 10.1128/AEM.02083-09
Anne Pierres, Dominique Touchard, Anne-Marie Benoliel, Pierre Bongrand, Dissecting Streptavidin-Biotin Interaction with a Laminar Flow Chamber Biophysical Journal. ,vol. 82, pp. 3214- 3223 ,(2002) , 10.1016/S0006-3495(02)75664-6
Jennifer W. McClaine, Roseanne M. Ford, Characterizing the adhesion of motile and nonmotile Escherichia coli to a glass surface using a parallel‐plate flow chamber Biotechnology and Bioengineering. ,vol. 78, pp. 179- 189 ,(2002) , 10.1002/BIT.10192
I. Vallet, J. W. Olson, S. Lory, A. Lazdunski, A. Filloux, The chaperone/usher pathways of Pseudomonas aeruginosa: Identification of fimbrial gene clusters (cup) and their involvement in biofilm formation Proceedings of the National Academy of Sciences of the United States of America. ,vol. 98, pp. 6911- 6916 ,(2001) , 10.1073/PNAS.111551898
J. F. Douglas, H. E. Johnson, S. Granick, A Simple Kinetic Model of Polymer Adsorption and Desorption Science. ,vol. 262, pp. 2010- 2012 ,(1993) , 10.1126/SCIENCE.262.5142.2010
George A. O'Toole, Roberto Kolter, Flagellar and twitching motility are necessary for Pseudomonas aeruginosa biofilm development Molecular Microbiology. ,vol. 30, pp. 295- 304 ,(1998) , 10.1046/J.1365-2958.1998.01062.X
Russell D. Monds, George A. O’Toole, The developmental model of microbial biofilms: ten years of a paradigm up for review Trends in Microbiology. ,vol. 17, pp. 73- 87 ,(2009) , 10.1016/J.TIM.2008.11.001
Roy D. Sjoblad, Raymond N. Doetsch, Adsorption of polarly flagellated bacteria to surfaces Current Microbiology. ,vol. 7, pp. 191- 194 ,(1982) , 10.1007/BF01568974
Manu Forero, Olga Yakovenko, Evgeni V Sokurenko, Wendy E Thomas, Viola Vogel, Uncoiling Mechanics of Escherichia coli Type I Fimbriae Are Optimized for Catch Bonds PLoS Biology. ,vol. 4, pp. e298- 1516 ,(2006) , 10.1371/JOURNAL.PBIO.0040298