Discontinuity induced bifurcations in nonlinear systems

作者: B. Santhosh , S. Narayanan , C. Padmanabhan

DOI: 10.1016/J.PIUTAM.2016.03.028

关键词: Time domainNumerical integrationSudden onsetNonlinear systemDry frictionMathematical analysisShooting methodMathematicsClassical mechanicsDiscontinuity (geotechnical engineering)

摘要: Abstract Nonlinear systems involving impact, friction, free-play, switching etc. are discontinuous and exhibit sliding grazing bifurcations when periodic trajectories interact with the discontinuity surface which classified into crossing sliding, adding depending on nature of bifurcating solutions from surface. The sudden onset chaos stick-slip motion can be explained in terms these bifurcations. This paper presents numerical numerical-analytical methods studying dynamics harmonically excited nonlinearities representing them as Filippov systems. switch model based integration schemes combination time domain shooting method adopted to obtain

参考文章(9)
Remco I. Leine, Henk Nijmeijer, Dynamics and Bifurcations of Non-Smooth Mechanical Systems ,(2004)
B. Santhosh, C. Padmanabhan, S. Narayanan, Numeric-analytic solutions of the smooth and discontinuous oscillator International Journal of Mechanical Sciences. ,vol. 84, pp. 102- 119 ,(2014) , 10.1016/J.IJMECSCI.2014.04.016
Jan Awrejcewicz, Michal Fečkan, Pawel Olejnik, On continuous approximation of discontinuous systems Nonlinear Analysis-theory Methods & Applications. ,vol. 62, pp. 1317- 1331 ,(2005) , 10.1016/J.NA.2005.04.033
M. DI BERNARDO, P. KOWALCZYK, A. NORDMARK, Sliding bifurcations : A novel mechanism for the sudden onset of chaos in dry friction oscillators International Journal of Bifurcation and Chaos. ,vol. 13, pp. 2935- 2948 ,(2003) , 10.1142/S021812740300834X
S. Narayanan, K. Jayaraman, Chaotic vibration in a non-linear oscillator with Coulomb damping Journal of Sound and Vibration. ,vol. 146, pp. 17- 31 ,(1991) , 10.1016/0022-460X(91)90520-T
J. AWREJCEWICZ, P. OLEJNIK, STICK-SLIP DYNAMICS OF A TWO-DEGREE-OF-FREEDOM SYSTEM International Journal of Bifurcation and Chaos. ,vol. 13, pp. 843- 861 ,(2003) , 10.1142/S0218127403006960
Andrzej Stefanski, Tomasz kapitaniak, Using Chaos Synchronization to Estimate the Largest Lyapunov Exponent of Nonsmooth Systems Discrete Dynamics in Nature and Society. ,vol. 4, pp. 207- 215 ,(2000) , 10.1155/S1026022600000200
Alan Wolf, Jack B. Swift, Harry L. Swinney, John A. Vastano, Determining Lyapunov exponents from a time series Physica D: Nonlinear Phenomena. ,vol. 16, pp. 285- 317 ,(1985) , 10.1016/0167-2789(85)90011-9