Mercer kernel-based clustering in feature space

作者: M. Girolami

DOI: 10.1109/TNN.2002.1000150

关键词: Artificial intelligencePattern recognitionLinear separabilityData structureData transformation (statistics)Unsupervised learningEigenvalues and eigenvectorsCluster analysisKernel (linear algebra)Feature vectorMathematics

摘要: The article presents a method for both the unsupervised partitioning of sample data and estimation possible number inherent clusters which generate data. This work exploits notion that performing nonlinear transformation into some high dimensional feature space increases probability linear separability patterns within transformed therefore simplifies associated structure. It is shown eigenvectors kernel matrix defines implicit mapping provides means to estimate computationally simple iterative procedure presented subsequent

参考文章(11)
Joachim M. Buhmann, Stochastic algorithms for exploratory data analysis: data clustering and data visualization Proceedings of the NATO Advanced Study Institute on Learning in graphical models. pp. 405- 419 ,(1998) , 10.1007/978-94-011-5014-9_14
Richard C. Dubes, Anil K. Jain, Algorithms for clustering data ,(1988)
Stephen J. Roberts, Richard Everson, Iead Rezek, Maximum certainty data partitioning Pattern Recognition. ,vol. 33, pp. 833- 839 ,(2000) , 10.1016/S0031-3203(99)00086-2
Te-Won Lee, M.S. Lewicki, T.J. Sejnowski, ICA mixture models for unsupervised classification of non-Gaussian classes and automatic context switching in blind signal separation IEEE Transactions on Pattern Analysis and Machine Intelligence. ,vol. 22, pp. 1078- 1089 ,(2000) , 10.1109/34.879789
J.H. Friedman, J.W. Tukey, A Projection Pursuit Algorithm for Exploratory Data Analysis IEEE Transactions on Computers. ,vol. 23, pp. 881- 890 ,(1974) , 10.1109/T-C.1974.224051
G. L. Scott, H. C. Longuet-Higgins, Feature grouping by 'relocalisation' of eigenvectors of the proximity matrix. british machine vision conference. pp. 1- 6 ,(1990) , 10.5244/C.4.20
Roman Rosipal, Mark Girolami, An Expectation-Maximization Approach to Nonlinear Component Analysis Neural Computation. ,vol. 13, pp. 505- 510 ,(2001) , 10.1162/089976601300014439
Volker Steinhage, Volker Roth, Nonlinear Discriminant Analysis Using Kernel Functions neural information processing systems. ,vol. 12, pp. 568- 574 ,(1999)
Bernhard Schölkopf, Alexander Smola, Klaus-Robert Müller, Nonlinear component analysis as a kernel eigenvalue problem Neural Computation. ,vol. 10, pp. 1299- 1319 ,(1998) , 10.1162/089976698300017467
Vladimir Naumovich Vapnik, Vlamimir Vapnik, Statistical learning theory John Wiley & Sons. ,(1998)