Separation of azeotropic mixtures using air microbubbles generated by fluidic oscillation

作者: Nada Abdulrazzaq , Baseem Al-Sabbagh , Julia M. Rees , William B. Zimmerman

DOI: 10.1002/AIC.15097

关键词: Mass transferDistillationAzeotropeAnalytical chemistryEvaporationChemistryZeotropic mixtureBatch distillationMole fractionBubble

摘要: The feasibility of separating the azeotropic mixture ethanol-water using microbubble-mediated batch distillation is presented. effects depth liquid in bubble tank and inlet air microbubble temperature on process efficiency were investigated. enrichment ethanol vapor phase was higher than that achieved at equilibrium conditions for all mole fractions considered, including azeotrope. On decreasing increasing microbubbles, separation improved. Ethanol with purity about 98.2 vol % obtained lowest level (3 mm) conjunction highest (90°C). Separation a small rise (4°C) 3 mm evaporation time 90 min making this system suitable treating thermally sensitive mixtures. © 2015 American Institute Chemical Engineers AIChE J, 62: 1192–1199, 2016

参考文章(30)
Keigo Matsuda, Kejin Huang, Koichi Iwakabe, Masaru Nakaiwa, Separation of Binary Azeotrope Mixture via Pressure-Swing Distillation with Heat Integration Journal of Chemical Engineering of Japan. ,vol. 44, pp. 969- 975 ,(2011) , 10.1252/JCEJ.11WE064
C. Ponce-de-León, R.W. Field, Comparison of anionic membranes used to concentrate nitric acid to beyond the azeotropic mixture Journal of Membrane Science. ,vol. 171, pp. 67- 77 ,(2000) , 10.1016/S0376-7388(99)00383-X
Filipe S Oliveira, Ana B Pereiro, Luís PN Rebelo, Isabel M Marrucho, None, Deep eutectic solvents as extraction media for azeotropic mixtures Green Chemistry. ,vol. 15, pp. 1326- 1330 ,(2013) , 10.1039/C3GC37030E
Juan Ángel Pacheco-Basulto, Diego Hernández-McConville, Fabricio Omar Barroso-Muñoz, Salvador Hernández, Juan Gabriel Segovia-Hernández, Agustín Jaime Castro-Montoya, Adrián Bonilla-Petriciolet, Purification of bioethanol using extractive batch distillation: Simulation and experimental studies Chemical Engineering and Processing: Process Intensification. ,vol. 61, pp. 30- 35 ,(2012) , 10.1016/J.CEP.2012.06.015
William B. Zimmerman, Mohammad Zandi, H.C. Hemaka Bandulasena, Václav Tesař, D. James Gilmour, Kezhen Ying, Design of an airlift loop bioreactor and pilot scales studies with fluidic oscillator induced microbubbles for growth of a microalgae Dunaliella salina Applied Energy. ,vol. 88, pp. 3357- 3369 ,(2011) , 10.1016/J.APENERGY.2011.02.013
Johannes Holtbruegge, Matthias Wierschem, Simon Steinruecken, Dorothea Voss, Lubow Parhomenko, Philip Lutze, Experimental investigation, modeling and scale-up of hydrophilic vapor permeation membranes: Separation of azeotropic dimethyl carbonate/methanol mixtures Separation and Purification Technology. ,vol. 118, pp. 862- 878 ,(2013) , 10.1016/J.SEPPUR.2013.08.025
Baokun Tang, Wentao Bi, Kyung Ho Row, Dehydration of Ethanol by Facile Synthesized Glucose-Based Silica Applied Biochemistry and Biotechnology. ,vol. 169, pp. 1056- 1068 ,(2013) , 10.1007/S12010-012-0076-Z
H ZHANG, M CHANG, J WANG, S YE, Evaluation of peach quality indices using an electronic nose by MLR, QPST and BP network Sensors and Actuators B-chemical. ,vol. 134, pp. 332- 338 ,(2008) , 10.1016/J.SNB.2008.05.008
Fahad Rehman, Gareth J.D. Medley, Hemaka Bandulasena, William B.J. Zimmerman, Fluidic oscillator-mediated microbubble generation to provide cost effective mass transfer and mixing efficiency to the wastewater treatment plants. Environmental Research. ,vol. 137, pp. 32- 39 ,(2015) , 10.1016/J.ENVRES.2014.11.017
Mahmood K. H. Al-Mashhadani, H. C. Hemaka Bandulasena, William B. Zimmerman, CO mass transfer induced through an airlift loop by a microbubble cloud generated by fluidic oscillation Industrial & Engineering Chemistry Research. ,vol. 51, pp. 1864- 1877 ,(2012) , 10.1021/IE200960V