Hierarchical ALS Algorithms for Nonnegative Matrix and 3D Tensor Factorization

作者: Andrzej Cichocki , Rafal Zdunek , Shun-ichi Amari

DOI: 10.1007/978-3-540-74494-8_22

关键词: MathematicsPattern recognitionBlind signal separationNon-negative matrix factorizationOverdetermined systemComponent analysisNonnegative matrixNeural codingAlgorithmArtificial intelligenceIndependent component analysisMinification

摘要: In the paper we present new Alternating Least Squares (ALS) algorithms for Nonnegative Matrix Factorization (NMF) and their extensions to 3D Tensor (NTF) that are robust in presence of noise have many potential applications, including multi-way Blind Source Separation (BSS), multi-sensory or multi-dimensional data analysis, nonnegative neural sparse coding. We propose use local cost functions whose simultaneous sequential (one by one) minimization leads a very simple ALS algorithm which works under some sparsity constraints both an under-determined (a system has less sensors than sources) overdetermined model. The extensive experimental results confirm validity high performance developed algorithms, especially with usage multi-layer hierarchical NMF. Extension proposed multidimensional Sparse Component Analysis Smooth is also proposed.

参考文章(25)
Matthias Heiler, Christoph Schnörr, Controlling sparseness in non-negative tensor factorization european conference on computer vision. pp. 56- 67 ,(2006) , 10.1007/11744023_5
Dongmin Kim, Suvrit Sra, Inderjit S. Dhillon, Fast Newton-type Methods for the Least Squares Nonnegative Matrix Approximation Problem siam international conference on data mining. pp. 343- 354 ,(2007) , 10.1137/1.9781611972771.31
Andrzej Cichocki, Shun-ichi Amari, Rafal Zdunek, Raul Kompass, Gen Hori, Zhaohui He, Extended SMART Algorithms for Non-negative Matrix Factorization Artificial Intelligence and Soft Computing – ICAISC 2006. pp. 548- 562 ,(2006) , 10.1007/11785231_58
Shun-ichi Amari, Andrzej Cichocki, Adaptive Blind Signal and Image Processing: Learning Algorithms and Applications John Wiley & Sons, Inc.. ,(2002)
Rafal Zdunek, Andrzej Cichocki, Non-negative Matrix Factorization with Quasi-Newton Optimization Artificial Intelligence and Soft Computing – ICAISC 2006. pp. 870- 879 ,(2006) , 10.1007/11785231_91
Minje Kim, Seungjin Choi, Monaural Music Source Separation: Nonnegativity, Sparseness, and Shift-Invariance Independent Component Analysis and Blind Signal Separation. pp. 617- 624 ,(2006) , 10.1007/11679363_77
Daniel D. Lee, H. Sebastian Seung, Learning the parts of objects by non-negative matrix factorization Nature. ,vol. 401, pp. 788- 791 ,(1999) , 10.1038/44565
Russell Albright, Amy Nicole Langville, Carl Dean Meyer, James Cox, David Duling, Algorithms, Initializations, and Convergence for the Nonnegative Matrix Factorization. arXiv: Numerical Analysis. ,(2014)
Morten Mørup, Lars Kai Hansen, Christoph S. Herrmann, Josef Parnas, Sidse M. Arnfred, Parallel Factor Analysis as an exploratory tool for wavelet transformed event-related EEG. NeuroImage. ,vol. 29, pp. 938- 947 ,(2006) , 10.1016/J.NEUROIMAGE.2005.08.005
A. Cichocki, R. Zdunek, Multilayer nonnegative matrix factorisation Electronics Letters. ,vol. 42, pp. 947- 948 ,(2006) , 10.1049/EL:20060983