Detection of Trace Elements/Isotopes in Olympic Dam Copper Concentrates by nanoSIMS

作者: Mark Rollog , Nigel J. Cook , Paul Guagliardo , Kathy Ehrig , Cristiana L. Ciobanu

DOI: 10.3390/MIN9060336

关键词: MineralGeochemistryUraniniteFracture (mineralogy)Environmental scienceMineral processingChalcociteUraniumBorniteTrace element

摘要: Many analytical techniques for trace element analysis are available to the geochemist and geometallurgist understand and, ideally, quantify distribution of minor components in a mineral deposit. Bulk data useful, but do not provide information regarding specific host minerals—or lack thereof, cases surface adherence or fracture fill—for each element. The CAMECA nanoscale secondary ion mass spectrometer (nanoSIMS) 50 50L instruments feature ultra-low minimum detection limits (to parts-per-billion) sub-micron spatial resolution, combination found any other platform. Using ore copper concentrate samples from Olympic Dam mining-processing operation, South Australia, we demonstrate application nanoSIMS mineralogical potential by-product detrimental elements. Results show previously undetected assemblages elemental associations, providing geochemists with insight into formation remobilization—and metallurgists critical necessary optimizing processing techniques. Gold Te may be seen associated brannerite, Ag prefers chalcocite over bornite. Rare earth elements quantities fluorapatite fluorite, which report final concentrates as entrained liberated gangue-sulfide composite particles. Selenium, As, reside sulfides, commonly association Pb, Bi, Ag, Au. Radionuclide daughters 238U decay chain located using nanoSIMS, on these that is unavailable microanalytical These radionuclides observed many minerals seem particularly enriched uranium minerals, some phosphates sulfates, within high area minerals. has proven valuable tool determining isotopes fine-grained ore, researchers crucial evidence needed answer questions formation, alteration, processing.

参考文章(58)
Matt R. Kilburn, Peta L. Clode, Elemental and Isotopic Imaging of Biological Samples Using NanoSIMS Methods in Molecular Biology. ,vol. 1117, pp. 733- 755 ,(2014) , 10.1007/978-1-62703-776-1_33
Johannes Schindelin, Curtis T. Rueden, Mark C. Hiner, Kevin W. Eliceiri, The ImageJ ecosystem: An open platform for biomedical image analysis Molecular Reproduction and Development. ,vol. 82, pp. 518- 529 ,(2015) , 10.1002/MRD.22489
Dawen Gao, Xiaoli Huang, Yu Tao, A critical review of NanoSIMS in analysis of microbial metabolic activities at single-cell level Critical Reviews in Biotechnology. ,vol. 36, pp. 884- 890 ,(2016) , 10.3109/07388551.2015.1057550
A.L. Smith, Radioactive-Scale Formation Journal of Petroleum Technology. ,vol. 39, pp. 697- 706 ,(1987) , 10.2118/14589-PA
Nigel J. Cook, Cristiana L. Ciobanu, Allan Pring, William Skinner, Masaaki Shimizu, Leonid Danyushevsky, Bernhardt Saini-Eidukat, Frank Melcher, Trace and minor elements in sphalerite: A LA-ICPMS study Geochimica et Cosmochimica Acta. ,vol. 73, pp. 4761- 4791 ,(2009) , 10.1016/J.GCA.2009.05.045
P. Hoppe, NanoSIMS: A new tool in cosmochemistry Applied Surface Science. ,vol. 252, pp. 7102- 7106 ,(2006) , 10.1016/J.APSUSC.2006.02.129
N. J. Evans, J. P. Byrne, J. T. Keegan, L. E. Dotter, Determination of Uranium and Thorium in Zircon, Apatite, and Fluorite: Application to Laser (U-Th)/He Thermochronology Journal of Analytical Chemistry. ,vol. 60, pp. 1159- 1165 ,(2005) , 10.1007/S10809-005-0260-1
Richard J.C. Brown, Martin J.T. Milton, Analytical techniques for trace element analysis: an overview Trends in Analytical Chemistry. ,vol. 24, pp. 266- 274 ,(2005) , 10.1016/J.TRAC.2004.11.010