Robust stability check of fractional order linear time invariant systems with interval uncertainties

作者: YangQuan Chen , Hyo-Sung Ahn , I. Podlubny

DOI: 10.1109/ICMA.2005.1626549

关键词: Order (ring theory)LTI system theoryMatlab codeControl theoryStability (probability)Linear systemMathematicsState-space representationRobust controlInterval (mathematics)

摘要: For uncertain fractional-order linear time invariant (FO-LTI) systems with interval coefficients described in state space form, the robust stability check problem is solved for first this paper. Both checking procedure and Matlab code are presented two illustrative examples. The conservatism shown to be small.

参考文章(27)
Manuel Duarte Ortigueira, J.A Tenreiro Machado, Editorial: fractional signal processing and applications Signal Processing. ,vol. 83, pp. 2285- 2286 ,(2003) , 10.1016/S0165-1684(03)00181-6
S. Manabe, The non-integer integral and its application to control systems. Mitsubishi Denki laboratory reports. ,vol. 2, ,(1961)
Denis Matignon, Brigitte d’Andréa-Novel, Some Results on Controllability and Observability of Finite-dimensional Fractional Differential Systems Comp. Eng. in S. A.. ,vol. 2, pp. 952- 956 ,(1996)
M. Axtell, M.E. Bise, Fractional calculus application in control systems IEEE Conference on Aerospace and Electronics. pp. 563- 566 ,(1990) , 10.1109/NAECON.1990.112826
I. Podlubny, Fractional-order systems and PI/sup /spl lambda//D/sup /spl mu//-controllers IEEE Transactions on Automatic Control. ,vol. 44, pp. 208- 214 ,(1999) , 10.1109/9.739144
Zhiping Qiu, Peter C. Müller, Andreas Frommer, An approximate method for the standard interval eigenvalue problem of real non‐symmetric interval matrices Communications in Numerical Methods in Engineering. ,vol. 17, pp. 239- 251 ,(2001) , 10.1002/CNM.401
Catherine Bonnet, Jonathan R. Partington, Coprime factorizations and stability of fractional differential systems Systems & Control Letters. ,vol. 41, pp. 167- 174 ,(2000) , 10.1016/S0167-6911(00)00050-5
Assem Deif, None, The Interval Eigenvalue Problem ZAMM - Journal of Applied Mathematics and Mechanics / Zeitschrift für Angewandte Mathematik und Mechanik. ,vol. 71, pp. 61- 64 ,(1991) , 10.1002/ZAMM.19910710117