Convergence of the Fleming-Viot process toward the minimal quasi-stationary distribution

作者: Nicolas Champagnat , Denis Villemonais

DOI: 10.30757/ALEA.V16-49

关键词: Birth–death processDiffusion (business)State (functional analysis)Distribution (mathematics)MathematicsConvergence (routing)Applied mathematicsFleming–Viot processStationary distributionMarkov processStatistics and Probability

摘要: We prove under mild conditions that the Fleming-Viot process selects minimal quasi-stationary distribution for Markov processes with soft killing on non-compact state spaces. Our results are applied to multi-dimensional birth and death processes, continuous time Galton-Watson diffusion killing.

参考文章(18)
Bertrand Cloez, Marie-Noémie Thai, Quantitative results for the Fleming–Viot particle system and quasi-stationary distributions in discrete space Stochastic Processes and their Applications. ,vol. 126, pp. 680- 702 ,(2016) , 10.1016/J.SPA.2015.09.016
Sean P. Meyn, R. L. Tweedie, STABILITY OF MARKOVIAN PROCESSES III: FOSTER- LYAPUNOV CRITERIA FOR CONTINUOUS-TIME PROCESSES Advances in Applied Probability. ,vol. 25, pp. 518- 548 ,(1993) , 10.2307/1427522
Ilie Grigorescu, Min Kang, Hydrodynamic limit for a Fleming-Viot type system Stochastic Processes and their Applications. ,vol. 110, pp. 111- 143 ,(2004) , 10.1016/J.SPA.2003.10.010
Mariusz Bieniek, Krzysztof Burdzy, Sam Finch, Non-extinction of a Fleming-Viot particle model Probability Theory and Related Fields. ,vol. 153, pp. 293- 332 ,(2012) , 10.1007/S00440-011-0372-5
S. N. Ethier, Thomas G. Kurtz, Fleming-Viot processes in population genetics Siam Journal on Control and Optimization. ,vol. 31, pp. 345- 386 ,(1993) , 10.1137/0331019
Amine Asselah, Pablo A. Ferrari, Pablo Groisman, Quasistationary distributions and Fleming-Viot processes in finite spaces Journal of Applied Probability. ,vol. 48, pp. 322- 332 ,(2011) , 10.1239/JAP/1308662630
Erik A. Van Doorn, Quasi-stationary distributions and convergence to quasi-stationarity of birth-death processes Advances in Applied Probability. ,vol. 23, pp. 683- 700 ,(1991) , 10.2307/1427670
Ilie Grigorescu, Min Kang, Immortal particle for a catalytic branching process Probability Theory and Related Fields. ,vol. 153, pp. 333- 361 ,(2012) , 10.1007/S00440-011-0347-6
Denis Villemonais, Interacting Particle Systems and Yaglom Limit Approximation of Diffusions with Unbounded Drift Electronic Journal of Probability. ,vol. 16, pp. 1663- 1692 ,(2011) , 10.1214/EJP.V16-925
Denis Villemonais, Minimal quasi-stationary distribution approximation for a birth and death process Electronic Journal of Probability. ,vol. 20, pp. 1- 18 ,(2015) , 10.1214/EJP.V20-3482