Using Simulation and Domain Adaptation to Improve Efficiency of Deep Robotic Grasping

作者: Konstantinos Bousmalis , Paul Wohlhart , Mrinal Kalakrishnan , Vincent Vanhoucke , Kurt Konolige

DOI:

关键词: Computer scienceDomain adaptationComputer visionGRASPMachine learningTerm (time)Range (mathematics)Artificial intelligence

摘要: … visual grasping … a grasping system to grasp novel objects from raw monocular RGB images. We extensively evaluate our approaches with a total of more than 25,000 physical test grasps…

参考文章(30)
Daniel Kappler, Jeannette Bohg, Stefan Schaal, Leveraging big data for grasp planning international conference on robotics and automation. pp. 4304- 4311 ,(2015) , 10.1109/ICRA.2015.7139793
Yaroslav Ganin, Evgeniya Ustinova, Hana Ajakan, Pascal Germain, Hugo Larochelle, François Laviolette, Mario Marchand, Victor Lempitsky, Domain-Adversarial Training of Neural Networks Domain Adaptation in Computer Vision Applications. ,vol. 17, pp. 189- 209 ,(2017) , 10.1007/978-3-319-58347-1_10
Rui Caseiro, Joao F. Henriques, Pedro Martins, Jorge Batista, Beyond the shortest path: Unsupervised domain adaptation by Sampling Subspaces along the Spline Flow computer vision and pattern recognition. pp. 3846- 3854 ,(2015) , 10.1109/CVPR.2015.7299009
Vishal M Patel, Raghuraman Gopalan, Ruonan Li, Rama Chellappa, Visual Domain Adaptation: A survey of recent advances IEEE Signal Processing Magazine. ,vol. 32, pp. 53- 69 ,(2015) , 10.1109/MSP.2014.2347059
Jeannette Bohg, Antonio Morales, Tamim Asfour, Danica Kragic, Data-Driven Grasp Synthesis—A Survey IEEE Transactions on Robotics. ,vol. 30, pp. 289- 309 ,(2014) , 10.1109/TRO.2013.2289018
Ashutosh Saxena, Justin Driemeyer, Andrew Y. Ng, Robotic Grasping of Novel Objects using Vision The International Journal of Robotics Research. ,vol. 27, pp. 157- 173 ,(2008) , 10.1177/0278364907087172
, Generative Adversarial Nets neural information processing systems. ,vol. 27, pp. 2672- 2680 ,(2014) , 10.3156/JSOFT.29.5_177_2
Raghuraman Gopalan, Ruonan Li, Rama Chellappa, Domain adaptation for object recognition: An unsupervised approach international conference on computer vision. pp. 999- 1006 ,(2011) , 10.1109/ICCV.2011.6126344
Leonidas J. Guibas, Silvio Savarese, Manolis Savva, Shuran Song, Fisher Yu, Angel X. Chang, Hao Su, Thomas A. Funkhouser, Qi-Xing Huang, Pat Hanrahan, Li Yi, Jianxiong Xiao, Zimo Li, ShapeNet: An Information-Rich 3D Model Repository arXiv: Graphics. ,(2015)