On the role of zealotry in the voter model

作者: Alexander M. Petersen , S. Redner , M. Mobilia

DOI: 10.1088/1742-5468/2007/08/P08029

关键词: Voter modelDistribution (number theory)Limit (mathematics)MathematicsProbability theoryGaussianMathematical economics

摘要: We study the voter model with a finite density of zealots—voters that never change opinion. For equal numbers zealots each species, distribution magnetization (opinions) is Gaussian in mean-field limit, as well one and two dimensions, width proportional to , where Z number zealots, independent total voters. Thus just few can prevent consensus or even formation robust majority.

参考文章(20)
Crispin W. Gardiner, Handbook of Stochastic Methods Springer Series in Synergetics. ,(1983) , 10.1007/978-3-662-02377-8
Mauro Mobilia, Does a single zealot affect an infinite group of voters Physical Review Letters. ,vol. 91, pp. 028701- ,(2003) , 10.1103/PHYSREVLETT.91.028701
E. Ben-Naim, P.L. Krapivsky, S. Redner, Bifurcations and patterns in compromise processes Physica D: Nonlinear Phenomena. ,vol. 183, pp. 190- 204 ,(2003) , 10.1016/S0167-2789(03)00171-4
Roy J. Glauber, Time‐Dependent Statistics of the Ising Model Journal of Mathematical Physics. ,vol. 4, pp. 294- 307 ,(1963) , 10.1063/1.1703954
Serge Galam, Frans Jacobs, The role of inflexible minorities in the breaking of democratic opinion dynamics Physica A-statistical Mechanics and Its Applications. ,vol. 381, pp. 366- 376 ,(2007) , 10.1016/J.PHYSA.2007.03.034
G�rard Weisbuch, Guillaume Deffuant, Fr�d�ric Amblard, Jean-Pierre Nadal, Meet, discuss, and segregate! Complexity. ,vol. 7, pp. 55- 63 ,(2002) , 10.1002/CPLX.10031
E. Ben-Naim, P. L. Krapivsky, Finite-size fluctuations in interacting particle systems Physical Review E. ,vol. 69, pp. 046113- 046113 ,(2004) , 10.1103/PHYSREVE.69.046113
Mauro Mobilia, Ivan T. Georgiev, Voting and catalytic processes with inhomogeneities. Physical Review E. ,vol. 71, pp. 046102- ,(2005) , 10.1103/PHYSREVE.71.046102
Tobias Reichenbach, Mauro Mobilia, Erwin Frey, Coexistence versus extinction in the stochastic cyclic Lotka-Volterra model Physical Review E. ,vol. 74, pp. 051907- ,(2006) , 10.1103/PHYSREVE.74.051907