Power Series Expansions for the Frequency and Period of the Limit Cycle of the Van Der Pol Equation

作者: C. M. Andersen , James F. Geer

DOI: 10.1137/0142047

关键词: MathematicsMathematical physicsSingularityPadé approximantPower seriesVan der Pol oscillatorMathematical analysisSeries expansionTaylor seriesRadiusPeriodic function

摘要: A power series expansion in the damping coefficient a is developed for frequency $\nu ( \varepsilon )$ of limit cycle van der Pol equation $\ddot U + = \dot U( 1 - U^2 )( 0\leqq < \infty )$. The computed to $O( ^{24} rational arithmetic using MACSYMA symbolic manipulation system and ^{164} floating-point FORTRAN.A Pade analysis indicates that singularities complex-$\varepsilon ^2 $ plane which are nearest origin branch points at radius $R \approx 3.42$ modulus \pm \beta $, where $\beta 1$ radians. Introduction variable $w /( ^4 2\varepsilon R\cos R^2 )^{1/2} leads expansions period converge $0\leqq w 1$, i.e., all $\varepsilon results compare very favorably with published frequencies determined numerically but disagree some exte...

参考文章(7)
Andre Deprit, A. R. M. Rom, Asymptotic representation of the cycle of Van der Pol's equation for small damping coefficients Zeitschrift für Angewandte Mathematik und Physik. ,vol. 18, pp. 736- 747 ,(1967) , 10.1007/BF01602044
M. Urabe, Periodic Solutions of van der Pol's Equations with Large Damping Coefficient lambda = 0 sim 10 IEEE Transactions on Circuits and Systems I-regular Papers. ,vol. 7, pp. 382- 386 ,(1960) , 10.1109/TCT.1960.1086718
P. Ponzo, N. Wax, On the Periodic Solution of the van der Pol Equation IEEE Transactions on Circuit Theory. ,vol. 12, pp. 135- 136 ,(1965) , 10.1109/TCT.1965.1082394
Wasley S. Krogdahl, Numerical solutions of the Van der Pol equation Zeitschrift für Angewandte Mathematik und Physik. ,vol. 11, pp. 59- 63 ,(1960) , 10.1007/BF01591803
J.A. Zonneveld, Periodic solutions of the Van der Pol equation Indagationes Mathematicae (Proceedings). ,vol. 69, pp. 620- 622 ,(1966) , 10.1016/S1385-7258(69)50068-X
H. Bavinck, J. Grasman, The method of matched asymptotic expansions for the periodic solution of the van der pol equation International Journal of Non-Linear Mechanics. ,vol. 9, pp. 421- 434 ,(1974) , 10.1016/0020-7462(74)90008-0
Peter J. Ponzo, Nelson Wax, On Certain Relaxation Oscillations: Asymptotic Solutions Journal of the Society for Industrial and Applied Mathematics. ,vol. 13, pp. 740- 766 ,(1965) , 10.1137/0113049