作者: C. M. Andersen , James F. Geer
DOI: 10.1137/0142047
关键词: Mathematics 、 Mathematical physics 、 Singularity 、 Padé approximant 、 Power series 、 Van der Pol oscillator 、 Mathematical analysis 、 Series expansion 、 Taylor series 、 Radius 、 Periodic function
摘要: A power series expansion in the damping coefficient a is developed for frequency $\nu ( \varepsilon )$ of limit cycle van der Pol equation $\ddot U + = \dot U( 1 - U^2 )( 0\leqq < \infty )$. The computed to $O( ^{24} rational arithmetic using MACSYMA symbolic manipulation system and ^{164} floating-point FORTRAN.A Pade analysis indicates that singularities complex-$\varepsilon ^2 $ plane which are nearest origin branch points at radius $R \approx 3.42$ modulus \pm \beta $, where $\beta 1$ radians. Introduction variable $w /( ^4 2\varepsilon R\cos R^2 )^{1/2} leads expansions period converge $0\leqq w 1$, i.e., all $\varepsilon results compare very favorably with published frequencies determined numerically but disagree some exte...