Model of the Current-Voltage Relation for a Skin Pore

作者: N. M. Birlea , S. I. Birlea , E. Culea

DOI: 10.1007/978-3-642-22586-4_33

关键词: Magnitude (mathematics)VoltageNonlinear systemEnergy (signal processing)Function (mathematics)Current (fluid)MechanicsCurrent densityMaterials scienceExponential function

摘要: Using a Nernst-Planck model, we show that the current density in membrane’s pore as function of voltage has three types behavior: quasi-ohmic behavior at low voltages, with small slope, non-ohmic linear dependence large and nonlinear transition region intermediate voltages. The magnitude from voltages depends mainly on height energy barrier inside pore, w, through an exponential term, e w . domain is experimentally accessible almost unexplored, despite fact it can offer direct information about pore. model only two assumed parameters, height, relative size entrance r, clear physical meaning, important advantage for fitting interpreting experimental data. This simple current-voltage nonlinearity good starting point explaining electrical skin

参考文章(17)
George Philip Lochner, The voltage-current characteristic of the human skin University of Pretoria. ,(2006)
Yuri A. Chizmadzhev, Andrey V. Indenbom, Peter I. Kuzmin, Sergey V. Galichenko, James C. Weaver, Russell O. Potts, Electrical Properties of Skin at Moderate Voltages: Contribution of Appendageal Macropores Biophysical Journal. ,vol. 74, pp. 843- 856 ,(1998) , 10.1016/S0006-3495(98)74008-1
Qingfang Xu, Rajan P. Kochambilli, Yang Song, Jinsong Hao, William I. Higuchi, S. Kevin Li, Effects of alternating current frequency and permeation enhancers upon human epidermal membrane. International Journal of Pharmaceutics. ,vol. 372, pp. 24- 32 ,(2009) , 10.1016/J.IJPHARM.2008.12.036
S. Grimnes, Skin impedance and electro-osmosis in the human epidermis Medical & Biological Engineering & Computing. ,vol. 21, pp. 739- 749 ,(1983) , 10.1007/BF02464037
David E. Clapham, Loren W. Runnels, Carsten Strübing, The trp ion channel family Nature Reviews Neuroscience. ,vol. 2, pp. 387- 396 ,(2001) , 10.1038/35077544
Katherine A. DeBruin, Wanda Krassowska, Modeling Electroporation in a Single Cell. II. Effects of Ionic Concentrations Biophysical Journal. ,vol. 77, pp. 1225- 1233 ,(1999) , 10.1016/S0006-3495(99)76974-2
Mustafa Sabri Kilic, Martin Z. Bazant, Armand Ajdari, Steric effects in the dynamics of electrolytes at large applied voltages. I. Double-layer charging. Physical Review E. ,vol. 75, pp. 021502- ,(2007) , 10.1103/PHYSREVE.75.021502
Patricio Ramírez, Vicente Gómez, Javier Cervera, Birgitta Schiedt, Salvador Mafé, Ion transport and selectivity in nanopores with spatially inhomogeneous fixed charge distributions. Journal of Chemical Physics. ,vol. 126, pp. 194703- ,(2007) , 10.1063/1.2735608
Y.A. Chizmadzhev, V.G. Zarnitsin, J.C. Weaver, R.O. Potts, Mechanism of electroinduced ionic species transport through a multilamellar lipid system Biophysical Journal. ,vol. 68, pp. 749- 765 ,(1995) , 10.1016/S0006-3495(95)80250-X
James C Weaver, Timothy E Vaughan, Yuri Chizmadzhev, Theory of electrical creation of aqueous pathways across skin transport barriers Advanced Drug Delivery Reviews. ,vol. 35, pp. 21- 39 ,(1999) , 10.1016/S0169-409X(98)00061-1