A new concept in Euler deconvolution of isolated gravity anomalies

作者: Roy , Agarwal , Shaw

DOI: 10.1046/J.1365-2478.2000.00203.X

关键词: GeometryGeologyDeconvolutionSalt domeEuler's formulaSystem of linear equationsFree parameterHorizontal line testGeophysicsGravity anomalyIsosceles triangle

摘要: Euler's homogeneity equation has been used to develop a new technique interpret the gravity anomalies over some simple geometrical sources, namely finite horizontal line/vertical line, vertical ribbon, semicircular dome/basin and an isosceles triangle approximating anticline/syncline. A linear over-determined system of equations solved compute depth, location structural index, all treated as free parameters. The concept variable index provides better depth estimates helps identify source geometry. Nomograms have prepared additional model parameter, horizontal/vertical extent ribbon radius dome/basin. efficacy proposed method evaluated using two real field examples.

参考文章(24)
E. CASSANO, F. ROCCA, Interpretation of Magnetic Anomalies Using Spectral Estimation TECHNIQUES Geophysical Prospecting. ,vol. 23, pp. 663- 681 ,(1975) , 10.1111/J.1365-2478.1975.TB01552.X
I. Marson, E. E. Klingele, Advantages of using the vertical gradient of gravity for 3-D interpretation Geophysics. ,vol. 58, pp. 1588- 1595 ,(1993) , 10.1190/1.1443374
B.K. Nandi, R.K. Shaw, B.N.P. Agarwal, A short note on : Identification of the shape of simple causative sources from gravity data Geophysical Prospecting. ,vol. 45, pp. 513- 520 ,(1997) , 10.1046/J.1365-2478.1997.450279.X
G. Golub, Numerical methods for solving linear least squares problems Numerische Mathematik. ,vol. 7, pp. 206- 216 ,(1965) , 10.1007/BF01436075
A. B. Reid, J. M. Allsop, H. Granser, A. J. Millett, I. W. Somerton, Magnetic interpretation in three dimensions using Euler deconvolution Geophysics. ,vol. 55, pp. 80- 91 ,(1990) , 10.1190/1.1442774
Pierre B. Keating, Weighted Euler deconvolution of gravity data Geophysics. ,vol. 63, pp. 1595- 1603 ,(1998) , 10.1190/1.1444456