Nodule Carbon Metabolism: Organic Acids for N2 Fixation

作者: C. P. Vance , S. S. Miller , B. T. Driscoll , D. L. Robinson , G. Trepp

DOI: 10.1007/978-94-011-5159-7_274

关键词: Malate dehydrogenaseMetabolismOrganic acidSucrose synthaseBiochemistryPhosphoenolpyruvate carboxylaseCarbon fixationSymbiosomeChemistryNitrogenase

摘要: The energy burden (carbon (C) cost) imposed on plants for symbiotic nitrogen (N2) fixation is approximately 6 mg C · N reduced (Day, Copeland, 1991). Photosynthate, in the form of sucrose, ultimate source carbon required both N2 and assimilation. Labeling studies show that sucrose derived from shoot transported to nodule within 15 min, reaching steady state concentrations 3.6 gfw (Streeter, Although initial product with greatest amount label CO2 fixation, it rapidly metabolized organic acids malate succinate accompanied by subsequent 14CO2 evolution. Several lines evidence make apparent, however, C4-dicarboxylic rather than provide nitrogenase activity skeletons Rhlzobium/Bradyrhizobium mutants incapable utilizing glucose fructose continue effective nodules, while unable take up ineffective nodules (Ronson et al., 1981; Finan 1983; Vance, Heichel, Bacteroids have a high affinity uptake system but not sugars (Udvardi, Day, 1997). Bacterial lacking malic enzyme are Fix (Driscoll, Finan, 1993). Symbiosome membranes acid transporters capable mediating flux lack comparable systems amino Furthermore 14C-malate - synthesized through directly incorporated into bacteroids respired concomitant metabolism does occur (Rosendahl 1990). Lastly, strikingly or other (Anthon, Emerich 1990; Rosendahl Romanov 1995). enhanced coupled their use reflect exquisite adaptations production low O2 environment. These plant involve coordinated expression control three critical enzymes, synthase (SS; EC 2.4.1.13), phosphoenolpyruvate carboxylase (PEPC; 4.1.1.31), dehydrogenase (MDH; 1.1.1.82).

参考文章(43)
John.G. Streeter, Transport and Metabolism of Carbon and Nitrogen in Legume Nodules Advances in Botanical Research. ,vol. 18, pp. 129- 187 ,(1991) , 10.1016/S0065-2296(08)60022-1
F Thummler, D P Verma, Nodulin-100 of soybean is the subunit of sucrose synthase regulated by the availability of free heme in nodules. Journal of Biological Chemistry. ,vol. 262, pp. 14730- 14736 ,(1987) , 10.1016/S0021-9258(18)47856-8
X. Q. Zhang, B. Li, R. Chollet, In Vivo Regulatory Phosphorylation of Soybean Nodule Phosphoenolpyruvate Carboxylase Plant Physiology. ,vol. 108, pp. 1561- 1568 ,(1995) , 10.1104/PP.108.4.1561
T M Finan, J M Wood, D C Jordan, Symbiotic properties of C4-dicarboxylic acid transport mutants of Rhizobium leguminosarum. Journal of Bacteriology. ,vol. 154, pp. 1403- 1413 ,(1983) , 10.1128/JB.154.3.1403-1413.1983
M. van Ghelue, B. Solheim, A. Ribeiro, T. Bisseling, K. Pawlowski, A. D. L. Akkermans, Sucrose synthase and enolase expression in actinorhizal nodules of Alnus glutinosa : comparison with legume nodules Molecular Genetics and Genomics. ,vol. 250, pp. 437- 446 ,(1996) , 10.1007/BF02174032
Bérénice Ricard, Jean Rivoal, Anne Spiteri, Alain Pradet, Anaerobic stress induces the transcription and translation of sucrose synthase in rice. Plant Physiology. ,vol. 95, pp. 669- 674 ,(1991) , 10.1104/PP.95.3.669
Marie-Odile Heckmann, Jean-Jacques Drevon, Pierre Saglio, Louis Salsac, Effect of Oxygen and Malate on NO3− Inhibition of Nitrogenase in Soybean Nodules Plant Physiology. ,vol. 90, pp. 224- 229 ,(1989) , 10.1104/PP.90.1.224