A Library to Run Evolutionary Algorithms in the Cloud Using MapReduce

作者: Pedro Fazenda , James McDermott , Una-May O’Reilly

DOI: 10.1007/978-3-642-29178-4_42

关键词: Computer scienceData processingLarge populationService-oriented architectureImplementationCloud computingService (systems architecture)Evolutionary algorithmDistributed computing

摘要: We discuss ongoing development of an evolutionary algorithm library to run on the cloud. relate how we have used Hadoop open-source MapReduce distributed data processing framework implement a single "island" with potentially very large population. The design generalizes beyond current, one-off kind implementations. It is in preparation for becoming modeling or optimization service oriented architecture tool designing new algorithms.

参考文章(9)
Shuaiqiang Wang, Byron J. Gao, Ke Wang, Hady W. Lauw, Parallel learning to rank for information retrieval international acm sigir conference on research and development in information retrieval. pp. 1083- 1084 ,(2011) , 10.1145/2009916.2010060
Chao Jin, Christian Vecchiola, Rajkumar Buyya, None, MRPGA: An Extension of MapReduce for Parallelizing Genetic Algorithms ieee international conference on escience. pp. 214- 221 ,(2008) , 10.1109/ESCIENCE.2008.78
Thilina Gunarathne, Tak-Lon Wu, Judy Qiu, Geoffrey Fox, MapReduce in the Clouds for Science ieee international conference on cloud computing technology and science. pp. 565- 572 ,(2010) , 10.1109/CLOUDCOM.2010.107
E.J. Vladislavleva, G.F. Smits, D. den Hertog, Order of Nonlinearity as a Complexity Measure for Models Generated by Symbolic Regression via Pareto Genetic Programming IEEE Transactions on Evolutionary Computation. ,vol. 13, pp. 333- 349 ,(2009) , 10.1109/TEVC.2008.926486
Di-Wei Huang, Jimmy Lin, Scaling Populations of a Genetic Algorithm for Job Shop Scheduling Problems Using MapReduce ieee international conference on cloud computing technology and science. pp. 780- 785 ,(2010) , 10.1109/CLOUDCOM.2010.18
Abhishek Verma, Xavier Llorà, David E. Goldberg, Roy H. Campbell, Scaling Genetic Algorithms Using MapReduce intelligent systems design and applications. pp. 13- 18 ,(2009) , 10.1109/ISDA.2009.181
Abhishek Verma, Xavier Llora, Shivaram Venkataraman, David E. Goldberg, Roy H. Campbell, Scaling eCGA model building via data-intensive computing IEEE Congress on Evolutionary Computation. pp. 1- 8 ,(2010) , 10.1109/CEC.2010.5586468
Abhishek Verma, Brian Cho, Nicolas Zea, Indranil Gupta, Roy H. Campbell, Breaking the MapReduce Stage Barrier international conference on cluster computing. ,vol. 16, pp. 191- 206 ,(2010) , 10.1007/S10586-011-0182-7
Abhishek Verma, Nicolas Zea, Brian Cho, Indranil Gupta, Roy H. Campbell, Breaking the MapReduce Stage Barrier international conference on cluster computing. pp. 235- 244 ,(2010) , 10.1109/CLUSTER.2010.29