作者: Mircea Grecu , William S. Olson , Chung-Lin Shie , Tristan S. L’Ecuyer , Wei-Kuo Tao
关键词: Radiosonde 、 Microwave 、 Radar 、 Environmental science 、 Microwave imaging 、 Latent heat 、 Sensible heat 、 Climatology 、 Precipitation 、 Remote sensing 、 Microwave radiometer 、 Meteorology
摘要: Abstract In this study, satellite passive microwave sensor observations from the Tropical Rainfall Measuring Mission (TRMM) Microwave Imager (TMI) are utilized to make estimates of latent + eddy sensible heating rates (Q1 − QR) where Q1 is apparent heat source and QR radiative rate in regions precipitation. The TMI algorithm (herein called TRAIN) calibrated or “trained” using relatively accurate based on spaceborne Precipitation Radar (PR) collocated with over a one-month period. estimation technique previously described Bayesian methodology, but improvements supporting cloud-resolving model simulations, an adjustment precipitation echo tops compensate for biases, separate scaling convective stratiform components that leads approximate balance between estimated vertically integrated condensation surface Estimates from...