Modelling evapotranspiration using discrete wavelet transform and neural networks.

作者: Turgay Partal

DOI: 10.1002/HYP.7448

关键词: Wavelet transformWaveletMathematical modelArtificial neural networkPattern recognitionComputer scienceSeries (mathematics)Transformation (function)Artificial intelligenceMeteorologyDiscrete wavelet transformCascade algorithm

摘要: This study combines wavelet transforms and feed-forward neural network methods for reference evapotranspiration estimation. The climatic data (air temperature, solar radiation, wind speed, relative humidity) from two stations in the United States was evaluated estimating models. For (WNN) model, input decomposed into sub-time series by transformation. Later, new (reconstructed series) are produced adding available components these reconstructed used as of WNN model. phase is pre-processing raw main different performance model compared with classical networks approach [artificial (ANN)], multi-linear regression Hargreaves empirical method. shows that could be applied successfully modelling data. Copyright © 2009 John Wiley & Sons, Ltd.

参考文章(56)
Paulin Coulibaly, Donald H. Burn, Wavelet analysis of variability in annual Canadian streamflows Water Resources Research. ,vol. 40, pp. 03105- ,(2004) , 10.1029/2003WR002667
Hikmet Kerem Cigizoglu, Generalized regression neural network in monthly flow forecasting Civil Engineering and Environmental Systems. ,vol. 22, pp. 71- 81 ,(2005) , 10.1080/10286600500126256
ÖZGÜR KIŞI, None, Generalized regression neural networks for evapotranspiration modelling Hydrological Sciences Journal-journal Des Sciences Hydrologiques. ,vol. 51, pp. 1092- 1105 ,(2006) , 10.1623/HYSJ.51.6.1092
J. L. Monteith, William E. Reifsnyder, Principles of Environmental Physics ,(2014)
K. P. Sudheer, A. K. Gosain, D. Mohana Rangan, S. M. Saheb, Modelling evaporation using an artificial neural network algorithm Hydrological Processes. ,vol. 16, pp. 3189- 3202 ,(2002) , 10.1002/HYP.1096
A.F Drago, S.R Boxall, Use of the wavelet transform on hydro-meteorological data Physics and Chemistry of The Earth. ,vol. 27, pp. 1387- 1399 ,(2002) , 10.1016/S1474-7065(02)00076-1
S NAOUM, I TSANIS, Hydroinformatics in evapotranspiration estimation Environmental Modelling and Software. ,vol. 18, pp. 261- 271 ,(2003) , 10.1016/S1364-8152(02)00076-2
Murat Küçük, Necati Ağirali˙oğlu, Wavelet Regression Technique for Streamflow Prediction Journal of Applied Statistics. ,vol. 33, pp. 943- 960 ,(2006) , 10.1080/02664760600744298
M. Kumar, N. S. Raghuwanshi, R. Singh, W. W. Wallender, W. O. Pruitt, Estimating Evapotranspiration using Artificial Neural Network Journal of Irrigation and Drainage Engineering-asce. ,vol. 128, pp. 224- 233 ,(2002) , 10.1061/(ASCE)0733-9437(2002)128:4(224)
S.J Yao, Y.H Song, L.Z Zhang, X.Y Cheng, Wavelet transform and neural networks for short-term electrical load forecasting Energy Conversion and Management. ,vol. 41, pp. 1975- 1988 ,(2000) , 10.1016/S0196-8904(00)00035-2