作者: T. Schubert
关键词: Physics 、 Mathematical analysis 、 Crystal plasticity 、 Boundary value problem 、 Affine transformation 、 Scaling 、 Single slip 、 Geometry 、 Microstructure 、 Infimum and supremum 、 Slip (materials science)
摘要: We derive a scaling-relation, for the infimum of energy for small ϵ,δ > 0, where p, q ≥ 1, u: Ω ℝ2 is deformation with suitable affine boundary conditions and γ: ℝ slip variable. This model motivated by two-dimensional single-slip in finite crystal plasticity. show, that Jϵ,δ scales as . scaling-relation attained an asymptotically self-similar branching construction.