Ripple morphology of graphitic surfaces: a comparison between few-layer graphene and HOPG

作者: N. Haghighian , D. Convertino , V. Miseikis , F. Bisio , A. Morgante

DOI: 10.1039/C8CP01039K

关键词: Raman spectroscopyChemical physicsEpitaxyGrapheneMoleculeMorphology (linguistics)Aqueous solutionMaterials scienceStackingX-ray photoelectron spectroscopy

摘要: The surface structure of Few-Layer Graphene (FLG) epitaxially grown on the C-face SiC has been investigated by TM-AFM in ambient air and upon interaction with diluted aqueous solutions bio-organic molecules (dimethyl sulfoxide, DMSO, L-Methionine). On pristine FLG we observe nicely ordered, three-fold oriented rippled domains, a 4.7+/-0.2 nm periodicity (small periodicity, SP) peak-to-valley distance range 0.1-0.2 nm. Upon mild molecular solution, ripple relaxes to 6.2+/-0.2 (large LP), while height increases 0.2-0.3 When additional energy is transferred system through sonication graphene planes are peeled off from FLG, as shown quantitative analysis XPS Raman spectroscopy data which indicate neat reduction thickness. domains no longer observed. Regarding HOPG, could not ripples cleaved samples air, LP develop solutions. Recent literature similar systems univocal regarding interpretation rippling. complex our comparative observations HOPG can be hardly rationalized solely base assembly molecules, either organic coming solution or adventitious species. We propose consider manifestation free-energy minimization quasi-2D layers, eventually affected factors such interplane stacking, and/or AFM tip.

参考文章(78)
Christian Riedl, Epitaxial Graphene on Silicon Carbide Surfaces: Growth, Characterization, Doping and Hydrogen Intercalation Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU). ,(2010)
Yasuhide Ohno, Kenzo Maehashi, Yusuke Yamashiro, Kazuhiko Matsumoto, Electrolyte-Gated Graphene Field-Effect Transistors for Detecting pH and Protein Adsorption Nano Letters. ,vol. 9, pp. 3318- 3322 ,(2009) , 10.1021/NL901596M
Amal Kasry, Ali A. Afzali, Satoshi Oida, Shu-Jen Han, Bernhard Menges, George S. Tulevski, Detection of Biomolecules via Benign Surface Modification of Graphene Chemistry of Materials. ,vol. 23, pp. 4879- 4881 ,(2011) , 10.1021/CM201577K
Thomas Alava, Jason A. Mann, Cécile Théodore, Jaime J. Benitez, William R. Dichtel, Jeevak M. Parpia, Harold G. Craighead, Control of the Graphene–Protein Interface Is Required To Preserve Adsorbed Protein Function Analytical Chemistry. ,vol. 85, pp. 2754- 2759 ,(2013) , 10.1021/AC303268Z
Ying Wang, Zhaohui Li, Jun Wang, Jinghong Li, Yuehe Lin, None, Graphene and graphene oxide: biofunctionalization and applications in biotechnology. Trends in Biotechnology. ,vol. 29, pp. 205- 212 ,(2011) , 10.1016/J.TIBTECH.2011.01.008
Federica De Leo, Alessandra Magistrato, Davide Bonifazi, Interfacing proteins with graphitic nanomaterials: from spontaneous attraction to tailored assemblies. Chemical Society Reviews. ,vol. 44, pp. 6916- 6953 ,(2015) , 10.1039/C5CS00190K
J. G. Vilhena, A. C. Dumitru, Elena T. Herruzo, Jesús I. Mendieta-Moreno, Ricardo Garcia, P. A. Serena, Rubén Pérez, Adsorption orientations and immunological recognition of antibodies on graphene Nanoscale. ,vol. 8, pp. 13463- 13475 ,(2016) , 10.1039/C5NR07612A
Minzhen Cai, Daniel Thorpe, Douglas H. Adamson, Hannes C. Schniepp, Methods of graphite exfoliation Journal of Materials Chemistry. ,vol. 22, pp. 24992- 25002 ,(2012) , 10.1039/C2JM34517J
Christopher E Hamilton, Jay R Lomeda, Zhengzong Sun, James M Tour, Andrew R Barron, None, High-yield organic dispersions of unfunctionalized graphene. Nano Letters. ,vol. 9, pp. 3460- 3462 ,(2009) , 10.1021/NL9016623
Dan Li, Marc B Müller, Scott Gilje, Richard B Kaner, Gordon G Wallace, None, Processable aqueous dispersions of graphene nanosheets Nature Nanotechnology. ,vol. 3, pp. 101- 105 ,(2008) , 10.1038/NNANO.2007.451