On the Mean Free Path for a Periodic Array of Spherical Obstacles

作者: H. S. Dumas , L. Dumas , F. Golse

DOI: 10.1007/BF02183388

关键词: Kinetic equationsClassical mechanicsMathematical analysisMean free pathStatistical modelKinetic theory of gasesSPHERESFinite horizonPhysicsScalingThermodynamic limit

摘要: We prove theorems pertaining to periodic arrays of spherical, obstacles which show how the macroscopic limit mean free path depends on scaling size obstacles. treat separately cases where are totally and partially absorbing, we also distinguish between two-dimensional arrays, our results optimal, higher dimensional they not. The cubically symmetric these apply do not have finite horizon.

参考文章(17)
Laurent Schwartz, Théorie des distributions ,(1966)
Oscar E. Lanford, Time evolution of large classical systems Dynamical Systems, Theory and Applications. ,vol. 38, pp. 1- 111 ,(1975) , 10.1007/3-540-07171-7_1
Reinhard Illner, Mario Pulvirenti, Global validity of the Boltzmann equation for a three-dimensional rare gas in vacuum Communications in Mathematical Physics. ,vol. 113, pp. 79- 85 ,(1986) , 10.1007/BF01211098
L A Bunimovich, Yakov G Sinai, N I Chernov, Markov partitions for two-dimensional hyperbolic billiards Russian Mathematical Surveys. ,vol. 45, pp. 105- 152 ,(1990) , 10.1070/RM1990V045N03ABEH002355
L. A. Bunimovich, Ya. G. Sinai, Statistical properties of Lorentz gas with periodic configuration of scatterers Communications in Mathematical Physics. ,vol. 78, pp. 479- 497 ,(1981) , 10.1007/BF02046760
P. M. Bleher, Statistical properties of two-dimensional periodic Lorentz gas with infinite horizon Journal of Statistical Physics. ,vol. 66, pp. 315- 373 ,(1992) , 10.1007/BF01060071
John William Scott Cassels, An Introduction to Diophantine Approximation ,(1957)
Herbert Spohn, The Lorentz process converges to a random flight process Communications in Mathematical Physics. ,vol. 60, pp. 277- 290 ,(1978) , 10.1007/BF01612893
R. Illner, M. Pulvirenti, Global validity of the Boltzmann equation for two- and three-dimensional rare gas in vacuum: Erratum and improved result Communications in Mathematical Physics. ,vol. 121, pp. 143- 146 ,(1989) , 10.1007/BF01218628
Halim Doss, Sur une Resolution Stochastique de l'Equation de Schrödinger à Coefficients Analytiques Communications in Mathematical Physics. ,vol. 73, pp. 247- 264 ,(1980) , 10.1007/BF01197701