Classification of gravitational instanton symmetries

作者: G. W. Gibbons , S. W. Hawking

DOI: 10.1007/BF01197189

关键词: Isometry (Riemannian geometry)GravitationGravitational instantonIsometry groupAction (physics)Mathematical physicsMathematicsHomogeneous spaceInstantonMathematical analysisNuts and bolts

摘要: We classify the action of one parameter isometry groups Gravitational Instantons, complete non singular positive definite solutions Einstein equations with or without Λ term. The fixed points are 2-types, isolated which we call “nuts” and 2-surfaces “bolts”. describe all known gravitational instantons relate numbers types nuts bolts occurring in them to their topological invariants. perform a 3+1 decomposition field respect orbits group exhibit certain duality between “electric” “magnetic” aspects gravity. also obtain formula for terms areas nut charges potentials that define. This can be interpreted thermodynamically several ways.

参考文章(40)
M. F. Atiyah, I. M. Singer, The Index of Elliptic Operators: III The Annals of Mathematics. ,vol. 87, pp. 546- 604 ,(1968) , 10.2307/1970717
S.W. Hawking, C.N. Pope, Symmetry breaking by instantons in supergravity Nuclear Physics B. ,vol. 146, pp. 381- 392 ,(1978) , 10.1016/0550-3213(78)90073-1
Allen Back, Peter G.O. Freund, Michael Forger, New gravitational instantons and universal spin structures Physics Letters B. ,vol. 77, pp. 181- 184 ,(1978) , 10.1016/0370-2693(78)90616-0
S. W. Hawking, Quantum gravity and path integrals Physical Review D. ,vol. 18, pp. 1747- 1753 ,(1978) , 10.1103/PHYSREVD.18.1747
Richard M. Schoen, Shing-Tung Yau, Proof of the Positive-Action Conjecture in Quantum Relativity Physical Review Letters. ,vol. 42, pp. 547- 548 ,(1979) , 10.1103/PHYSREVLETT.42.547
G. W. Gibbons, C. N. Pope, ℂ P 2 as a gravitational Instanton Communications in Mathematical Physics. ,vol. 61, pp. 239- 248 ,(1978) , 10.1007/BF01940766
Paul Baum, Jeff Cheeger, Infinitesimal isometries and pontryagin numbers Topology. ,vol. 8, pp. 173- 193 ,(1969) , 10.1016/0040-9383(69)90008-1
Tohru Eguchi, Peter G. O. Freund, Quantum Gravity and World Topology Physical Review Letters. ,vol. 37, pp. 1251- 1254 ,(1976) , 10.1103/PHYSREVLETT.37.1251
Don N. Page, Positive-action conjecture Physical Review D. ,vol. 18, pp. 2733- 2738 ,(1978) , 10.1103/PHYSREVD.18.2733
Robert Geroch, Spinor structure of space-times in general relativity. i Journal of Mathematical Physics. ,vol. 9, pp. 1739- 1744 ,(1968) , 10.1063/1.1664507