Can shared-neighbor distances defeat the curse of dimensionality?

作者: Michael E. Houle , Hans-Peter Kriegel , Peer Kröger , Erich Schubert , Arthur Zimek

DOI: 10.1007/978-3-642-13818-8_34

关键词: Search engine indexingMeasure (mathematics)Similarity (network science)Data miningComputer scienceCurse of dimensionalityData objectsArtificial intelligencePattern recognitionDistance measures

摘要: … In particular, we assess the performance of sharedneighbor … objects induced by some primary distance measure. We find … of neighbors s considered, we propose as possible distance …

参考文章(39)
Levent Ertöz, Michael S. Steinbach, Vipin Kumar, Finding Clusters of Different Sizes, Shapes, and Densities in Noisy, High Dimensional Data. siam international conference on data mining. pp. 47- 58 ,(2003)
Hans-Peter Kriegel, Peer Kröger, Erich Schubert, Arthur Zimek, Outlier Detection in Axis-Parallel Subspaces of High Dimensional Data Advances in Knowledge Discovery and Data Mining. pp. 831- 838 ,(2009) , 10.1007/978-3-642-01307-2_86
Carlotta Domeniconi, Dimitrios Gunopulos, Sheng Ma, Dimitris Papadopoulos, Subspace Clustering of High Dimensional Data. siam international conference on data mining. pp. 517- 521 ,(2004)
Alberto Belussi, Christos Faloutsos, Estimating the Selectivity of Spatial Queries Using the `Correlation' Fractal Dimension very large data bases. pp. 299- 310 ,(1995)
Alexander Hinneburg, Charu C. Aggarwal, Daniel A. Keim, What Is the Nearest Neighbor in High Dimensional Spaces very large data bases. pp. 506- 515 ,(2000)
Kevin Beyer, Jonathan Goldstein, Raghu Ramakrishnan, Uri Shaft, When Is ''Nearest Neighbor'' Meaningful? international conference on database theory. pp. 217- 235 ,(1999) , 10.1007/3-540-49257-7_15
Kristin P. Bennett, Usama Fayyad, Dan Geiger, Density-based indexing for approximate nearest-neighbor queries knowledge discovery and data mining. pp. 233- 243 ,(1999) , 10.1145/312129.312236
Michael E. Houle, Navigating massive data sets via local clustering knowledge discovery and data mining. pp. 547- 552 ,(2003) , 10.1145/956750.956817
Hans-Peter Kriegel, Matthias S hubert, Arthur Zimek, Angle-based outlier detection in high-dimensional data Proceeding of the 14th ACM SIGKDD international conference on Knowledge discovery and data mining - KDD 08. pp. 444- 452 ,(2008) , 10.1145/1401890.1401946
Lance Parsons, Ehtesham Haque, Huan Liu, Subspace clustering for high dimensional data ACM SIGKDD Explorations Newsletter. ,vol. 6, pp. 90- 105 ,(2004) , 10.1145/1007730.1007731