FROM PERIODICITY TO CHAOS IN HYDRODYNAMIC SYSTEMS

作者: A. Libchaber

DOI: 10.1016/B978-0-444-87707-9.50020-8

关键词: Relevance (information retrieval)Statistical physicsSimple (abstract algebra)CHAOS (operating system)Rayleigh benardMathematicsDynamical systemClassical mechanics

摘要: In recent years a number of fluid experiments have been performed to study the relevance dynamical system theory some simple flows. We will review here those aspects, for Rayleigh Benard only.

参考文章(6)
Pierre Collet, Jean Pierre Eckmann, Iterated maps on the interval as dynamical systems ,(1980)
Yves Pomeau, Paul Manneville, Intermittent transition to turbulence in dissipative dynamical systems Communications in Mathematical Physics. ,vol. 74, pp. 189- 197 ,(1980) , 10.1007/BF01197757
B. Malraison, P. Atten, P. Berge, M. Dubois, Dimension of strange attractors : an experimental determination for the chaotic regime of two convective systems Journal de Physique Lettres. ,vol. 44, pp. 897- 902 ,(1983) , 10.1051/JPHYSLET:019830044022089700
M. Dubois, M. A. Rubio, P. Berge, Experimental evidence of intermittencies associated with a subharmonic bifurcation Physical Review Letters. ,vol. 51, pp. 1446- 1449 ,(1983) , 10.1103/PHYSREVLETT.51.1446
Marzio Giglio, Sergio Musazzi, Umberto Perini, Transition to Chaotic Behavior via a Reproducible Sequence of Period-Doubling Bifurcations Physical Review Letters. ,vol. 47, pp. 243- 246 ,(1981) , 10.1103/PHYSREVLETT.47.243
J. -P. Eckmann, Roads to turbulence in dissipative dynamical systems Reviews of Modern Physics. ,vol. 53, pp. 643- 654 ,(1981) , 10.1103/REVMODPHYS.53.643