Density Operators and Quasiprobability Distributions

作者: K. E. Cahill , R. J. Glauber

DOI: 10.1103/PHYSREV.177.1882

关键词: Quasiprobability distributionProduction (computer science)Mathematical physicsSeries expansionQuantum mechanicsExpectation valueOrder (ring theory)Trace classBounded functionPhysicsSelf-adjoint operator

摘要: The problem of expanding a density operator $\ensuremath{\rho}$ in forms that simplify the evaluation important classes quantum-mechanical expectation values is studied. weight function $P(\ensuremath{\alpha})$ $P$ representation, Wigner distribution $W(\ensuremath{\alpha})$, and $〈\ensuremath{\alpha}|\ensuremath{\rho}|\ensuremath{\alpha}〉$, where $|\ensuremath{\alpha}〉$ coherent state, are discussed from unified point view. Each these quasiprobability distributions examined as value Hermitian operator, an integral representation for associated with by one operator-function correspondences defined preceding paper. shown to be all whose eigenvalues infinite. existence infinitely differentiable found equivalent well-defined antinormally ordered series expansion powers annihilation creation operators $a$ ${a}^{\ifmmode\dagger\else\textdagger\fi{}}$. $W(\ensuremath{\alpha})$ continuous, uniformly bounded, square-integrable symmetrically power-series operator. which differentiable, corresponds normally form Its use involve singularities closely related those occur representation. A parametrized introduced $W(\ensuremath{\alpha},s)$ may identified $〈\ensuremath{\alpha}|\ensuremath{\rho}|\ensuremath{\alpha}〉$ when order parameter $s$ assumes $s=+1, 0, \ensuremath{-}1$, respectively. analog $\ensuremath{\delta}$ This trace class $\mathrm{Res}l0$, has bounded $\mathrm{Res}=0$, infinite $s=1$. Marked changes properties exhibited varied continuously $s=\ensuremath{-}1$, corresponding $s=+1$, $P(\ensuremath{\alpha})$. Methods constructing functions using them compute presented illustrated several examples. One examples leads physical characterization appropriate.

参考文章(23)
E. Wigner, On the Quantum Correction For Thermodynamic Equilibrium Physical Review. ,vol. 40, pp. 749- 759 ,(1932) , 10.1103/PHYSREV.40.749
J. E. Moyal, Quantum mechanics as a statistical theory Mathematical Proceedings of the Cambridge Philosophical Society. ,vol. 45, pp. 99- 124 ,(1949) , 10.1017/S0305004100000487
Roy J. Glauber, Coherent and Incoherent States of the Radiation Field Physical Review. ,vol. 131, pp. 2766- 2788 ,(1963) , 10.1103/PHYSREV.131.2766
ECG153347 Sudarshan, None, Equivalence of Semiclassical and Quantum Mechanical Descriptions of Statistical Light Beams Physical Review Letters. ,vol. 10, pp. 277- 279 ,(1963) , 10.1103/PHYSREVLETT.10.277
CL Mehta, ECG Sudarshan, None, Relation between Quantum and Semiclassical Description of Optical Coherence Physical Review. ,vol. 138, pp. B274- B280 ,(1965) , 10.1103/PHYSREV.138.B274
Kevin E. Cahill, Coherent-State Representations for the Photon Density Operator Physical Review. ,vol. 138, pp. B1566- B1576 ,(1965) , 10.1103/PHYSREV.138.B1566
John R. Klauder, Improved Version of Optical Equivalence Theorem Physical Review Letters. ,vol. 16, pp. 534- 536 ,(1966) , 10.1103/PHYSREVLETT.16.534
R. Bonifacio, L. M. Narducci, E. Montaldi, Conditions for Existence of a Diagonal Representation for Quantum Mechanical Operators Physical Review Letters. ,vol. 16, pp. 1125- 1127 ,(1966) , 10.1103/PHYSREVLETT.16.1125
R. Bonifacio, L. M. Narducci, E. Montaldi, On Glauber's representation for general quantum-mechanical operators Il Nuovo Cimento A. ,vol. 47, pp. 890- 905 ,(1967) , 10.1007/BF02771403
M. Lax, W. Louisell, Quantum noise IX: Quantum Fokker-Planck solution for laser noise IEEE Journal of Quantum Electronics. ,vol. 3, pp. 47- 58 ,(1967) , 10.1109/JQE.1967.1074446