Biological and Biomaterials‐Assisted Synthesis of Precious Metal Nanoparticles

作者: Jason G. Parsons , Jose R. Peralta-Videa , Kenneth M. Dokken , Jorge L. Gardea-Torresdey

DOI: 10.1002/9783527610419.NTLS0134

关键词: Chemical reductionNanotechnologyNanoparticleMaterials sciencePrecious metal

摘要: The biological synthesis of precious metal nanoparticles is becoming an important area research and a new innovative method for the such materials. Interest in means to synthesize has increased over past few years because does not require toxic/hazardous chemicals, as do many traditional chemical reduction techniques. This chapter describes some methods currently being used nanoparticles, including use inactivated biomasses from different organisms, extracts plants fruits, fungal- bacterial-mediated nanoparticle synthesis, living plant-mediated synthesis. also briefly analytical techniques characterize ultraviolet-visible spectroscopy, X-ray diffraction, transmission electron microscopy absorption spectroscopy. Particular attention paid bioreduction gold silver, these are most commonly metals nanoparticles. Keywords: nanoparticles; growth process; precious metals; fungi; plants; bacteria

参考文章(108)
Nelson Durán, Priscyla D Marcato, Oswaldo L Alves, Gabriel IH De Souza, Elisa Esposito, None, Mechanistic aspects of biosynthesis of silver nanoparticles by several Fusarium oxysporum strains. Journal of Nanobiotechnology. ,vol. 3, pp. 8- 15 ,(2005) , 10.1186/1477-3155-3-8
John Turkevich, Colloidal gold. Part II Gold Bulletin. ,vol. 18, pp. 125- 131 ,(1985) , 10.1007/BF03214694
J.G. Parsons, J.R. Peralta-Videa, J.L. Gardea-Torresdey, Chapter 21 Use of plants in biotechnology: Synthesis of metal nanoparticles by inactivated plant tissues, plant extracts, and living plants Concepts and Applications in Environmental Geochemistry. ,vol. 5, pp. 463- 485 ,(2007) , 10.1016/S1474-8177(07)05021-8
Frederick D. Sisler, Claude E. Zobell, Hydrogen utilization by some marine sulfate-reducing bacteria. Journal of Bacteriology. ,vol. 62, pp. 117- 127 ,(1951) , 10.1128/JB.62.1.117-127.1951
T. Klaus, R. Joerger, E. Olsson, C.-G. Granqvist, Silver-based crystalline nanoparticles, microbially fabricated Proceedings of the National Academy of Sciences of the United States of America. ,vol. 96, pp. 13611- 13614 ,(1999) , 10.1073/PNAS.96.24.13611
Gilles Berhault, Marta Bausach, Laure Bisson, Loïc Becerra, Cécile Thomazeau, Denis Uzio, Seed-Mediated Synthesis of Pd Nanocrystals: Factors Influencing a Kinetic- or Thermodynamic-Controlled Growth Regime Journal of Physical Chemistry C. ,vol. 111, pp. 5915- 5925 ,(2007) , 10.1021/JP0702752
Zhen Song, Tanhong Cai, Jonathan C. Hanson, Jose A. Rodriguez, Jan Hrbek, Structure and reactivity of Ru nanoparticles supported on modified graphite surfaces: a study of the model catalysts for ammonia synthesis. Journal of the American Chemical Society. ,vol. 126, pp. 8576- 8584 ,(2004) , 10.1021/JA031718S
Charlotte Marsden, Esben Taarning, David Hansen, Lars Johansen, Søren K Klitgaard, Kresten Egeblad, Claus Hviid Christensen, None, Aerobic oxidation of aldehydes under ambient conditions using supported gold nanoparticle catalysts Green Chemistry. ,vol. 10, pp. 168- 170 ,(2008) , 10.1039/B712171G
Absar Ahmad, Satyajyoti Senapati, M Islam Khan, Rajiv Kumar, R Ramani, V Srinivas, Murali Sastry, None, Intracellular synthesis of gold nanoparticles by a novel alkalotolerant actinomycete,Rhodococcusspecies Nanotechnology. ,vol. 14, pp. 824- 828 ,(2003) , 10.1088/0957-4484/14/7/323
M.L. López, J.G. Parsons, J.R. Peralta Videa, J.L. Gardea-Torresdey, An XAS study of the binding and reduction of Au(III) by hop biomass Microchemical Journal. ,vol. 81, pp. 50- 56 ,(2005) , 10.1016/J.MICROC.2005.01.011