Host Nitric Oxide Disrupts Microbial Cell-to-Cell Communication to Inhibit Staphylococcal Virulence.

作者: Rodolfo Urbano , Joyce E. Karlinsey , Stephen J. Libby , Paschalis-Thomas Doulias , Harry Ischiropoulos

DOI: 10.1016/J.CHOM.2018.04.001

关键词: Staphylococcal infectionsVirulenceMicrobiologyStaphylococcus aureusBiologyCell signalingInnate immune systemQuorum sensingTranscription factorNitric oxide

摘要: Summary Staphylococcus aureus is a commensal bacterium that can asymptomatically colonize its host but also causes invasive infections. Quorum sensing regulates S. aureus virulence and the transition from to pathogenic organism. However, little known about how innate immunity affects interbacterial communication. We show nitric oxide suppresses staphylococcal by targeting Agr quorum system. Nitric oxide-mediated inhibition occurs through direct modification of cysteine residues C55, C123, C199 AgrA transcription factor. Cysteine decreases promoter occupancy as well agr operon sensing-activated toxin genes. In pneumonia model, mice lacking inducible oxide synthase develop more severe disease with heightened mortality proinflammatory cytokine responses. addition, α-toxin production increases in absence or oxide-sensitive residues. Our findings demonstrate an anti-virulence mechanism for immunity.

参考文章(71)
Ferric C. Fang, Nitric Oxide and Infection ,(2013)
Christopher N. Merrikh, Bonita J. Brewer, Houra Merrikh, The B. subtilis Accessory Helicase PcrA Facilitates DNA Replication through Transcription Units PLOS Genetics. ,vol. 11, pp. e1005289- ,(2015) , 10.1371/JOURNAL.PGEN.1005289
Jonathan S. Stamler, Santiago Lamas, Ferric C. Fang, Nitrosylation. the prototypic redox-based signaling mechanism. Cell. ,vol. 106, pp. 675- 683 ,(2001) , 10.1016/S0092-8674(01)00495-0
Richard P. Novick, Genetic systems in staphylococci. Methods in Enzymology. ,vol. 204, pp. 587- 636 ,(1991) , 10.1016/0076-6879(91)04029-N
E. Morfeldt, D. Taylor, A. von Gabain, S. Arvidson, Activation of alpha-toxin translation in Staphylococcus aureus by the trans-encoded antisense RNA, RNAIII. The EMBO Journal. ,vol. 14, pp. 4569- 4577 ,(1995) , 10.1002/J.1460-2075.1995.TB00136.X
Foo Y. Liew, Iain B. McInnes, Curtis C. Gemmell, Bernard Leung, Xiao-Qing Wei, Septic Arthritis Following Staphylococcus aureus Infection in Mice Lacking Inducible Nitric Oxide Synthase Journal of Immunology. ,vol. 160, pp. 308- 315 ,(1998)
Lawrence A Kelley, Stefans Mezulis, Christopher M Yates, Mark N Wass, Michael J E Sternberg, The Phyre2 web portal for protein modeling, prediction and analysis Nature Protocols. ,vol. 10, pp. 845- 858 ,(2015) , 10.1038/NPROT.2015.053
A. R. Richardson, S. J. Libby, F. C. Fang, A nitric oxide-inducible lactate dehydrogenase enables Staphylococcus aureus to resist innate immunity. Science. ,vol. 319, pp. 1672- 1676 ,(2008) , 10.1126/SCIENCE.1155207
Changwei Li, Hongquan Li, Ziwei Jiang, Tian Zhang, Yue Wang, Zhiheng Li, Yelin Wu, Shizhao Ji, Shichu Xiao, Bernhard Ryffel, Katherine A. Radek, Zhaofan Xia, Yuping Lai, Interleukin-33 Increases Antibacterial Defense by Activation of Inducible Nitric Oxide Synthase in Skin PLoS Pathogens. ,vol. 10, pp. e1003918- ,(2014) , 10.1371/JOURNAL.PPAT.1003918
Matthew Thoendel, Alexander R. Horswill, Identification of Staphylococcus aureus AgrD Residues Required for Autoinducing Peptide Biosynthesis Journal of Biological Chemistry. ,vol. 284, pp. 21828- 21838 ,(2009) , 10.1074/JBC.M109.031757